Project Icon

internlm-xcomposer2d5-7b-4bit

简化大型语言模型的文本与图像处理新纪元

InternLM-XComposer2.5在文本与图像理解领域展现非凡性能,其应用灵活性媲美GPT-4V,仅靠7B参数即可完成复杂任务。模型通过24K图文上下文训练与96K扩展能力,适用于大量输入输出任务。此外,项目提供了4-bit量化模型来有效降低内存消耗,并支持使用Transformers快速集成,涵盖从视频理解到多图对话的多种应用场景。

项目介绍

InternLM-XComposer2.5 是一个在文本-图像理解和合成应用中表现卓越的项目,该项目以仅7B(70亿)参数规模的后端大语言模型达到了类似GPT-4V的能力。IXC2.5通过训练24000幅交错的图文语境,并通过RoPE(旋转位置编码)外推机制,能够无缝拓展到96000的长语境,这使得IXC2.5在需要广泛输入和输出语境的任务中表现得尤为出色。

4位量化模型

为了降低内存需求,该项目提供了通过LMDeploy进行4位量化的模型。使用这个轻量化模型将内存占用减至最低,用户可以通过阅读这里中的比较指南了解详细的内存使用情况。

from lmdeploy import TurbomindEngineConfig, pipeline
from lmdeploy.vl import load_image
engine_config = TurbomindEngineConfig(model_format='awq')
pipe = pipeline('internlm/internlm-xcomposer2d5-7b-4bit', backend_config=engine_config)
image = load_image('examples/dubai.png')
response = pipe(('describe this image', image))
print(response.text)

使用Transformers导入模型

为了使用Transformers加载InternLM-XComposer2.5模型,以下代码可以帮助快速上手:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
ckpt_path = "internlm/internlm-xcomposer2d5-7b"
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True).cuda()
# 设置`torch_dtype=torch.floatb16`加载bfloat16型号,否则将以float32加载并可能导致OOM错误。
model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
model = model.eval()

快速入门

项目还提供了简单示例,通过🤗 Transformers展示如何使用InternLM-XComposer2.5。

视频理解

import torch
from transformers import AutoModel, AutoTokenizer

torch.set_grad_enabled(False)

# 初始化模型和Tokenizer
model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
model.tokenizer = tokenizer

query = 'Here are some frames of a video. Describe this video in detail'
image = ['./examples/liuxiang.mp4',]
with torch.autocast(device_type='cuda', dtype=torch.float16):
    response, his = model.chat(tokenizer, query, image, do_sample=False, num_beams=3, use_meta=True)
print(response)

多图对话

import torch
from transformers import AutoModel, AutoTokenizer

torch.set_grad_enabled(False)

# 初始化模型和Tokenizer
model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
model.tokenizer = tokenizer

query = 'Image1 <ImageHere>; Image2 <ImageHere>; Image3 <ImageHere>; I want to buy a car from the three given cars, analyze their advantages and weaknesses one by one'
image = ['./examples/cars1.jpg', './examples/cars2.jpg', './examples/cars3.jpg',]
with torch.autocast(device_type='cuda', dtype=torch.float16):
    response, his = model.chat(tokenizer, query, image, do_sample=False, num_beams=3, use_meta=True)
print(response)

高分辨率图像理解

import torch
from transformers import AutoModel, AutoTokenizer

torch.set_grad_enabled(False)

# 初始化模型和Tokenizer
model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
model.tokenizer = tokenizer

query = 'Analyze the given image in a detail manner'
image = ['./examples/dubai.png']
with torch.autocast(device_type='cuda', dtype=torch.float16):
    response, _ = model.chat(tokenizer, query, image, do_sample=False, num_beams=3, use_meta=True)
print(response)

InternLM-XComposer2.5的设计目标是提供一种易用而功能强大的工具,满足对文本、图像数据的综合分析需求。对于需要进行大规模或复杂数据处理的用户,该项目提供了可扩展性的解决方案,同时兼顾了性能与资源使用之间的平衡。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号