Project Icon

awesome-normalizing-flows

归一化流 构建复杂概率分布的新兴统计工具

这个项目汇集了归一化流相关的优质资源,包括论文、应用案例、视频讲解、软件包和代码库等。归一化流是一种新兴统计技术,能通过可训练的光滑可逆变换链将简单分布转化为复杂分布。该资源库为研究人员和实践者提供了全面的参考材料,有助于深入了解和应用这一强大工具。

Awesome Normalizing Flows

Awesome Pull Requests Welcome Link Check DOI

A list of awesome resources for understanding and applying normalizing flows (NF): a relatively simple yet powerful new tool in statistics for constructing expressive probability distributions from simple base distributions using a chain (flow) of trainable smooth bijective transformations (diffeomorphisms).

Diagram of the slow (sequential) forward pass of a Masked Autoregressive Flow (MAF) layer

Figure inspired by Lilian Weng. Created in TikZ. View source.


Contents  Table of Contents

  1. 📝 Publications
  2. 🛠️ Applications
  3. 📺 Videos
  4. 📦 Packages
    1. PyTorch  PyTorch Packages
    2. TensorFlow  TensorFlow Packages
    3. JAX  JAX Packages
    4. Julia  Julia Packages
  5. 🧑‍💻 Repos
    1. PyTorch  PyTorch Repos
    2. JAX  JAX Repos
    3. TensorFlow  TensorFlow Repos
    4. Other  Other Repos
  6. 🌐 Blog Posts
  7. 🚧 Contributing

📝 Publications (60)

  1. 2024-06-20 - Transferable Boltzmann Generators by Klein, Noé
    Boltzmann Generators, a machine learning method, generate equilibrium samples of molecular systems by learning a transformation from a simple prior distribution to the target Boltzmann distribution via normalizing flows. Recently, flow matching has been used to train Boltzmann Generators for small systems in Cartesian coordinates. This work extends this approach by proposing a framework for transferable Boltzmann Generators that can predict Boltzmann distributions for unseen molecules without retraining. This allows for approximate sampling and efficient reweighting to the target distribution. The framework is tested on dipeptides, demonstrating efficient generalization to new systems and improved efficiency compared to single-system training. [Code]

  2. 2023-01-03 - FInC Flow: Fast and Invertible k×k Convolutions for Normalizing Flows by Kallapa, Nagar et al.
    propose a k×k convolutional layer and Deep Normalizing Flow architecture which i) has a fast parallel inversion algorithm with running time O(nk^2) (n is height and width of the input image and k is kernel size), ii) masks the minimal amount of learnable parameters in a layer. iii) gives better forward pass and sampling times comparable to other k×k convolution-based models on real-world benchmarks. We provide an implementation of the proposed parallel algorithm for sampling using our invertible convolutions on GPUs. [Code]

  3. 2022-10-15 - Invertible Monotone Operators for Normalizing Flows by Ahn, Kim et al.
    This work proposes the monotone formulation to overcome the issue of the Lipschitz constants in previous ResNet-based normalizing flows using monotone operators and provides an in-depth theoretical analysis. Furthermore, this work constructs an activation function called Concatenated Pila (CPila) to improve gradient flow. The resulting model, Monotone Flows, exhibits an excellent performance on multiple density estimation benchmarks (MNIST, CIFAR-10, ImageNet32, ImageNet64). [Code]

  4. 2022-08-18 - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows by Postels, Danelljan et al.
    The invertibility constraint of NFs imposes limitations on data distributions that reside on lower dimensional manifolds embedded in higher dimensional space. This is often bypassed by adding noise to the data which impacts generated sample quality. This work generates samples from the original data distribution given full knowledge of perturbed distribution and noise model. They establish NFs trained on perturbed data implicitly represent the manifold in regions of maximum likelihood, then propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.

  5. 2022-06-03 - Graphical Normalizing Flows by Wehenkel, Louppe
    This work revisits coupling and autoregressive transformations as probabilistic graphical models showing they reduce to Bayesian networks with a pre-defined topology. From this new perspective, the authors propose the graphical normalizing flow, a new invertible transformation with either a prescribed or a learnable graphical structure. This model provides a promising way to inject domain knowledge into normalizing flows while preserving both the interpretability of Bayesian networks and the representation capacity of normalizing flows. [Code]

  6. 2022-05-16 - Multi-scale Attention Flow for Probabilistic Time Series Forecasting by Feng, Xu et al.
    Proposes a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF), where one integrates multi-scale attention and relative position information and the multivariate data distribution is represented by the conditioned normalizing flow.

  7. 2022-03-02 - Adaptive Monte Carlo augmented with normalizing flows by Gabrié, Rotskoff et al.
    Markov Chain Monte Carlo (MCMC) algorithms struggle with sampling from high-dimensional, multimodal distributions, requiring extensive computational effort or specialized importance sampling strategies. To address this, an adaptive MCMC approach is proposed, combining local updates with nonlocal transitions via normalizing flows. This method blends standard transition kernels with generative model moves, adapting the generative model using generated data to improve sampling efficiency. Theoretical analysis and numerical experiments demonstrate the algorithm's ability to equilibrate quickly between metastable modes, sampling effectively across large free energy barriers and achieving significant accelerations over traditional MCMC methods. [Code]

  8. 2022-01-14 - E(n) Equivariant Normalizing Flows by Satorras, Hoogeboom et al.
    Introduces equivariant graph neural networks into the normalizing flow framework which combine to give invertible equivariant functions. Demonstrates their flow beats prior equivariant models and allows sampling of molecular configurations with positions, atom types and charges.

  9. 2021-07-16 - Efficient Bayesian Sampling Using Normalizing Flows to Assist Markov Chain Monte Carlo Methods by Gabrié, Rotskoff et al.
    Normalizing flows have potential in Bayesian statistics as a complementary or alternative method to MCMC for sampling posteriors. However, their training via reverse KL divergence may be inadequate for complex posteriors. This research proposes a new training approach utilizing direct KL divergence, which involves augmenting a local MCMC algorithm with a normalizing flow to enhance mixing rate and utilizing the resulting samples to train the flow. This method requires minimal prior knowledge of the posterior and can be applied for model validation and evidence estimation, offering a promising strategy for efficient posterior sampling.

  10. 2021-07-03 - CInC Flow: Characterizable Invertible 3x3 Convolution by Nagar, Dufraisse et al.
    Seeks to improve expensive convolutions. They investigate the conditions for when 3x3 convolutions are invertible under which conditions (e.g. padding) and saw successful speedups. Furthermore, they developed a more expressive, invertible Quad coupling layer. [Code]

  11. 2021-04-14 - Orthogonalizing Convolutional Layers with the Cayley Transform by Trockman, Kolter
    Parametrizes the multichannel convolution to be orthogonal via the Cayley transform (skew-symmetric convolutions in the Fourier domain). This enables the inverse to be computed efficiently. [Code]

  12. 2021-04-14 - Improving Normalizing Flows via Better Orthogonal Parameterizations by Goliński, Lezcano-Casado et al.
    Parametrizes the 1x1 convolution via the exponential map and the Cayley map. They demonstrate an improved optimization for the Sylvester normalizing flows.

  13. 2020-09-28 - Multivariate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows by Rasul, Sheikh et al.
    Models the multi-variate temporal dynamics of time series via an autoregressive deep learning model, where the data distribution is represented by a conditioned normalizing flow. [OpenReview.net] [Code]

  14. 2020-09-21 - Haar Wavelet based Block Autoregressive Flows for Trajectories by Bhattacharyya, Straehle et al.
    Introduce a Haar wavelet-based block autoregressive model.

  15. 2020-07-15 - AdvFlow: Inconspicuous Black-box Adversarial Attacks using Normalizing Flows by Dolatabadi, Erfani et al.
    An adversarial attack method on image classifiers that use normalizing flows. [Code]

  16. 2020-07-06 - SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows by Nielsen, Jaini et al.
    They present a generalized framework that encompasses both Flows (deterministic maps) and VAEs (stochastic maps). By seeing deterministic maps x = f(z) as limiting cases of stochastic maps x ~ p(x|z), the ELBO is reinterpreted as a change of variables formula for the stochastic maps. Moreover, they present a few examples of surjective layers using stochastic maps, which can be composed together with flow layers. [Video] [Code]

  17. 2020-06-15 - Why Normalizing Flows Fail to Detect Out-of-Distribution Data by Kirichenko, Izmailov et al.
    This study how traditional normalizing flow models can suffer from out-of-distribution data. They offer a solution to combat this issue by modifying the coupling layers. [Tweet] [Code]

  18. 2020-06-03 - Equivariant Flows: exact likelihood generative learning for symmetric densities by Köhler, Klein et al.
    Shows that distributions generated by equivariant NFs faithfully reproduce symmetries in the underlying density. Proposes building blocks for flows which preserve typical symmetries in physical/chemical many-body systems. Shows that symmetry-preserving flows can provide better generalization and sampling efficiency.

  19. 2020-06-02 - The Convolution Exponential and Generalized Sylvester Flows by Hoogeboom, Satorras et al.
    Introduces exponential convolution to add the spatial dependencies in linear layers as an improvement of the 1x1 convolutions. It uses matrix exponentials to create cheap and invertible layers. They also use this new architecture to create convolutional Sylvester flows and graph convolutional exponentials. [Code]

  20. 2020-05-11 - iUNets: Fully invertible U-Nets with Learnable Upand Downsampling by Etmann, Ke et al.
    Extends the classical UNet to be fully invertible by enabling invertible, orthogonal upsampling and downsampling layers. It is rather efficient so it should be able to enable stable training of deeper and larger networks.

  21. 2020-04-08 - Normalizing Flows with Multi-Scale Autoregressive Priors by Mahajan, Bhattacharyya et al.
    Improves the representational power of flow-based models by introducing channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR). [Code]

  22. 2020-03-31 - Flows for simultaneous manifold learning and density estimation by Brehmer, Cranmer
    Normalizing flows that learn the data manifold and probability density function on that manifold. [Tweet] [Code]

  23. 2020-03-04 - Gaussianization Flows by Meng, Song et al.
    Uses a repeated composition of trainable kernel layers and orthogonal transformations. Very competitive versus some of the SOTA like Real-NVP, Glow and FFJORD. [Code]

  24. 2020-02-27 - Gradient Boosted Normalizing Flows by Giaquinto, Banerjee
    Augment traditional normalizing flows with gradient boosting. They show that training multiple models can achieve good results and it's not necessary to have more complex distributions. [Code]

  25. 2020-02-24 - [Modeling Continuous Stochastic Processes with Dynamic Normalizing

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号