Project Icon

JenkinsPipelineUnit

Jenkins流水线代码单元测试框架

JenkinsPipelineUnit是针对Jenkins流水线代码的单元测试框架。它支持对Groovy Pipeline DSL编写的流水线进行配置和逻辑测试,提供Jenkins命令模拟、作业配置模拟、执行堆栈跟踪和回归测试等功能。该框架兼容Java 11+版本,可通过Maven或Gradle集成到项目中,方便开发人员进行流水线代码的自动化测试。

JenkinsPipelineUnit Testing Framework

Jenkins Pipeline Unit is a testing framework for unit testing Jenkins pipelines, written in Groovy Pipeline DSL.

Linux/Windows Build status Mac Build status GitHub release (latest SemVer) Gitter chat

If you use Jenkins as your CI workhorse (like us @ lesfurets.com) and you enjoy writing pipeline-as-code, you already know that pipeline code is very powerful but can get pretty complex.

This testing framework lets you write unit tests on the configuration and conditional logic of the pipeline code, by providing a mock execution of the pipeline. You can mock built-in Jenkins commands, job configurations, see the stacktrace of the whole execution and even track regressions.

Table of Contents

  1. Usage
  2. Configuration
  3. Declarative Pipeline
  4. Testing Shared Libraries
  5. Writing Testable Libraries
  6. Note On CPS
  7. Contributing
  8. Demos and Examples

Usage

Add to Your Project as Test Dependency

JenkinsPipelineUnit requires Java 11, since this is also the minimum version required by Jenkins. Also note that JenkinsPipelineUnit is not currently compatible with Groovy 4, please see this issue for more details.

Note: Starting from version 1.2, artifacts are published to https://repo.jenkins-ci.org/releases.

Maven

<repositories>
    <repository>
    <id>jenkins-ci-releases</id>
    <url>https://repo.jenkins-ci.org/releases/</url>
    </repository>
    ...
</repositories>

<dependencies>
    <dependency>
        <groupId>com.lesfurets</groupId>
        <artifactId>jenkins-pipeline-unit</artifactId>
        <version>1.9</version>
        <scope>test</scope>
    </dependency>
    ...
</dependencies>

Gradle

repositories {
    maven { url 'https://repo.jenkins-ci.org/releases/' }
    ...
}

dependencies {
    testImplementation "com.lesfurets:jenkins-pipeline-unit:1.9"
    ...
}

Start Writing Tests

You can write your tests in Groovy or Java, using the test framework you prefer. The easiest entry point is extending the abstract class BasePipelineTest, which initializes the framework with JUnit.

Let's say you wrote this awesome pipeline script, which builds and tests your project:

def execute() {
    node() {
        String utils = load 'src/test/jenkins/lib/utils.jenkins'
        String revision = stage('Checkout') {
            checkout scm
            return utils.currentRevision()
        }
        gitlabBuilds(builds: ['build', 'test']) {
            stage('build') {
                gitlabCommitStatus('build') {
                    sh "mvn clean package -DskipTests -DgitRevision=$revision"
                }
            }

            stage('test') {
                gitlabCommitStatus('test') {
                    sh "mvn verify -DgitRevision=$revision"
                }
            }
        }
    }
}

return this

Now using the Jenkins Pipeline Unit you can write a unit test to see if it does the job:

import com.lesfurets.jenkins.unit.BasePipelineTest

class TestExampleJob extends BasePipelineTest {
    @Test
    void shouldExecuteWithoutErrors() {
        loadScript('job/exampleJob.jenkins').execute()
        printCallStack()
    }
}

This test will print the call stack of the execution, which should look like so:

   exampleJob.run()
   exampleJob.execute()
      exampleJob.node(groovy.lang.Closure)
         exampleJob.load(src/test/jenkins/lib/utils.jenkins)
            utils.run()
         exampleJob.stage(Checkout, groovy.lang.Closure)
            exampleJob.checkout({$class=GitSCM, branches=[{name=feature_test}], extensions=[], userRemoteConfigs=[{credentialsId=gitlab_git_ssh, url=github.com/lesfurets/JenkinsPipelineUnit.git}]})
            utils.currentRevision()
               utils.sh({returnStdout=true, script=git rev-parse HEAD})
         exampleJob.gitlabBuilds({builds=[build, test]}, groovy.lang.Closure)
            exampleJob.stage(build, groovy.lang.Closure)
               exampleJob.gitlabCommitStatus(build, groovy.lang.Closure)
                  exampleJob.sh(mvn clean package -DskipTests -DgitRevision=bcc19744)
            exampleJob.stage(test, groovy.lang.Closure)
               exampleJob.gitlabCommitStatus(test, groovy.lang.Closure)
                  exampleJob.sh(mvn verify -DgitRevision=bcc19744)

Mocking Jenkins Variables

You can define both environment variables and job execution parameters.

import com.lesfurets.jenkins.unit.BasePipelineTest

class TestExampleJob extends BasePipelineTest {
    @Override
    @BeforeEach
    void setUp() {
        super.setUp()
        // Assigns false to a job parameter ENABLE_TEST_STAGE
        addParam('ENABLE_TEST_STAGE', 'false')
        // Assigns 1.0.0-rc.1 to the environment variable TAG_NAME
        addEnvVar('TAG_NAME', '1.0.0-rc.1')
        // Defines the previous execution status
        binding.getVariable('currentBuild').previousBuild = [result: 'UNSTABLE']
    }

    @Test
    void verifyParam() {
        assertEquals('false', binding.getVariable('params')['ENABLE_TEST_STAGE'])
    }
}

After calling super.setUp(), the test helper instance is available, as well as many helper methods. The test helper already provides basic variables such as a very simple currentBuild definition. You can redefine them as you wish.

Note that super.setUp() must be called prior to using most features. This is commonly done using your own setUp method, decorated with @Override and @BeforeEach.

Parameters added via addParam are immutable, which reflects the same behavior in Jenkins. Attempting to modify the params map in the binding will result in an error.

Mocking Jenkins Commands

You can register interceptors to mock pipeline methods, including Jenkins commands, which may or may not return a result.

import com.lesfurets.jenkins.unit.BasePipelineTest

class TestExampleJob extends BasePipelineTest {
    @Override
    @BeforeEach
    void setUp() {
        super.setUp()
        helper.registerAllowedMethod('sh', [Map]) { args -> return 'bcc19744' }
        helper.registerAllowedMethod('timeout', [Map, Closure], null)
        helper.registerAllowedMethod('timestamps', []) { println 'Printing timestamp' }
        helper.registerAllowedMethod('myMethod', [String, int]) { String s, int i ->
            println "Executing myMethod mock with args: '${s}', '${i}'"
        }
    }
}

The test helper already includes mocks for all base pipeline steps as well as a steps from a few widely-used plugins. You need to register allowed methods if you want to override these mocks and add others. Note that you need to provide a method signature and a callback (closure or lambda) in order to allow a method. Any method call which is not recognized will throw an exception.

Please refer to the BasePipelineTest class for the list of currently supported mocks.

Some tricky methods such as load and parallel are implemented directly in the helper. If you want to override those, make sure that you extend the PipelineTestHelper class.

Mocking readFile and fileExists

The readFile and fileExists steps can be mocked to return a specific result for a given file name. This can be useful for testing pipelines for which file operations can influence subsequent steps. An example of such a testing scenario follows:

// Jenkinsfile
node {
    stage('Process output') {
        if (fileExists('output') && readFile('output') == 'FAILED!!!') {
            currentBuild.result = 'FAILURE'
            error 'Build failed'
        }
    }
}
@Test
void exampleReadFileTest() {
    helper.addFileExistsMock('output', true)
    helper.addReadFileMock('output', 'FAILED!!!')

    runScript('Jenkinsfile')

    assertJobStatusFailure()
}

Mocking Shell Steps

The shell steps (sh, bat, etc) are used by many pipelines for a variety of tasks. They can be mocked to either (a) statically return:

  • A string for standard output
  • A return code

Or (b), to execute a closure that returns a Map (with stdout and exitValue entries). The closure will be executed when the shell is called, allowing for dynamic behavior.

Here is a sample pipeline and corresponding unit tests for each of these variants.

// Jenkinsfile
node {
    stage('Mock build') {
        String systemType = sh(returnStdout: true, script: 'uname')
        if (systemType == 'Debian') {
            sh './build.sh --release'
            int status = sh(returnStatus: true, script: './test.sh')
            if (status > 0) {
                currentBuild.result = 'UNSTABLE'
            } else {
                def result = sh(
                    returnStdout: true,
                    script: './processTestResults.sh --platform debian',
                )
                if (!result.endsWith('SUCCESS')) {
                    currentBuild.result = 'FAILURE'
                    error 'Build failed!'
                }
            }
        }
    }
}
@Test
void debianBuildSuccess() {
    helper.addShMock('uname', 'Debian', 0)
    helper.addShMock('./build.sh --release', '', 0)
    helper.addShMock('./test.sh', '', 0)
    // Have the sh mock execute the closure when the corresponding script is run:
    helper.addShMock('./processTestResults.sh --platform debian') { script ->
        // Do something "dynamically" first...
        return [stdout: "Executing ${script}: SUCCESS", exitValue: 0]
    }

    runScript("Jenkinsfile")

    assertJobStatusSuccess()
}

@Test
void debianBuildUnstable() {
    helper.addShMock('uname', 'Debian', 0)
    helper.addShMock('./build.sh --release', '', 0)
    helper.addShMock('./test.sh', '', 1)

    runScript('Jenkinsfile')

    assertJobStatusUnstable()
}

Note that in all cases, the script executed by sh must exactly match the string passed to helper.addShMock, including the script arguments, whitespace, etc. For more flexible matching, you can use a pattern (regular expression) and even capture groups:

helper.addShMock(~/.\/build.sh\s--(.*)/) { String script, String arg ->
    assert (arg == 'debug') || (arg == 'release')
    return [stdout: '', exitValue: 2]
}

Also, mocks are stacked, so if two mocks match a call, the last one wins. Combined with a match-everything mock, you can tighten your tests a bit:

@BeforeEach
void setUp() {
    super.setUp()
    helper = new PipelineTestHelper()
    // Basic `sh` mock setup:
    // - generate an error on unexpected calls
    // - ignore any echo (debug) outputs, they are not relevant
    // - all further shell mocks are configured in the test
    helper.addShMock() { throw new Exception('Unexpected sh call') }
    helper.addShMock(~/echo\s.*/, '', 0)
}

Analyzing the Mock Execution

The helper registers every method call to provide a stacktrace of the mock execution.

@Test
void shouldExecuteWithoutErrors() {
    runScript('Jenkinsfile')

    assertJobStatusSuccess()
    assertThat(helper.callStack.findAll { call ->
        call.methodName == 'sh'
    }.any { call ->
        callArgsToString(call).contains('mvn verify')
    }).isTrue()
}

This will also check that mvn verify was called during the job execution.

Checking Pipeline Status

Let's say you have a simple script, and you'd like to check its behavior if a step fails.

// Jenkinsfile
node() {
    git 'some_repo_url'
    sh 'make'
}

You can mock the sh step to just update the pipeline status to FAILURE. To verify that your pipeline is failing, you need to check the status with BasePipelineTest.assertJobStatusFailure().

@Test
void checkBuildStatus() {
    helper.registerAllowedMethod('sh', [String]) { cmd ->
        if (cmd == 'make') {
            binding.getVariable('currentBuild').result = 'FAILURE'
        }
    }

    runScript('Jenkinsfile')

    assertJobStatusFailure()
}

Checking Pipeline Exceptions

Sometimes it is useful to verify that a specific exception was thrown during the pipeline run. JUnit 4 and 5 have slightly different mechanisms for doing this.

For both examples below, assume that the following pipeline is being tested:

To do so you can use org.junit.rules.ExpectedException

// Jenkinsfile
node {
    throw new IllegalArgumentException('oh no!')
}

JUnit 4

class TestCase extends BasePipelineTest {
    @Test(expected = IllegalArgumentException)
    void verifyException() {
        runScript('Jenkinsfile')
    }
}

JUnit 5

import static org.junit.jupiter.api.Assertions.assertThrows

class TestCase extends BasePipelineTest {
    @Test
    void verifyException() {
        assertThrows(IllegalArgumentException) { runScript('Jenkinsfile') }
    }
}

Compare the Callstack with a Previous Implementation

One other use of the callstacks is to check your pipeline executions for possible regressions. You have a dedicated method you can call if you extend BaseRegressionTest:

@Test
void testPipelineNonRegression() {
    loadScript('job/exampleJob.jenkins').execute()
    super.testNonRegression('example')
}

This will compare the current callstack of the job to the one you have in a text callstack reference file. To update this file with new callstack, just set this JVM argument when running your tests: -Dpipeline.stack.write=true. You then can go ahead and commit this change in your SCM to check in the change.

Preserve Original Callstack Argument References

The default behavior of the callstack capture is to clone each call's arguments to preserve their values at time of the call should those arguments mutate downstream. That is a good guard when your scripts are passing ordinary mutable variables as arguments.

However, argument types that are not Cloneable are captured as String values. Most of the time this is a perfect fallback. But for some complex types, or for types that don't implement toString(), it can be tricky or impossible to validate the call values in a test.

Take the following simple example:

Map pretendArgsFromFarUpstream = [
    foo: 'bar',
    foo2: 'more bar please',
    aNestedMap: [aa: 1, bb: 2],
    plusAList: [1, 2, 3, 4],
].asImmutable()

node() {
    doSomethingWithThis(pretendArgsFromFarUpstream)
}

pretendArgsFromFarUpstream is an immutable map and will be recorded as a String in the callstack. Your test may want to perform fine-grained validations via map key referencing instead of pattern matching or similar parsing. For example:

assertEquals(2, arg.aNestedMap.bb)

You may want to perform this kind of validation, particularly if your pipelines pass final and/or immutable variables as arguments. You can retain the direct reference to the variable in the callstack by setting this switch in your test setup:

helper.cloneArgsOnMethodCallRegistration = false

Running Inline Scripts

In case you want to have some script executed directly within a test case rather than creating a resource file for it, loadInlineScript and runInlineScript can be used.

@Test
void testSomeScript() {
    Object script = loadInlineScript('''
        node {
            stage('Build') {
                sh 'make'
            }
        }
    ''')

    script.execute()

    printCallStack()
    assertJobStatusSuccess()
}

Note that inline scripts cannot be debugged via breakpoints as there is no file to attach to!

Configuration

The abstract class BasePipelineTest configures the helper with useful conventions:

  • It looks for pipeline scripts in your project in root (./.) and src/main/jenkins paths.
  • Jenkins pipelines let you load other scripts from a parent script with load command. However load takes the full path relative to the project root. The test helper mock successfully the load command to load the scripts. To make relative paths work, you need to configure the path of the project where your
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号