Project Icon

jina-reranker-v1-tiny-en

快速文本重排序解决方案,支持最长8192个token处理

jina-reranker-v1-tiny-en在JinaBERT模型基础上通过知识蒸馏技术实现高效文本重排序,支持最长8192个token的处理,适用于高速度需求场景,并确保结果的准确性。提供多种接入方式,包括Jina AI Reranker API、sentence-transformers库及transformers.js等。该模型表现优异,确保搜索结果的相关性和准确性。

jina-reranker-v1-tiny-en项目介绍

项目概述

jina-reranker-v1-tiny-en是一个专为极快的重新排序而设计的模型,同时保持具有竞争力的性能。这个模型使用JinaBERT作为其基础。JinaBERT是BERT架构的一种独特变体,支持ALiBi的对称双向变体。这样的设计允许jina-reranker-v1-tiny-en处理比其他重新排序模型更长的文本序列,最多可达8,192个标记(tokens)。

为了实现速度的提升,jina-reranker-v1-tiny-en使用了一种称为知识蒸馏的技术。这种技术通过让一个复杂但较慢的模型(如原始的jina-reranker-v1-base-en)充当教师,把知识凝聚到一个较小但更快的学生模型中。这个学生模型保留了大部分教师模型的知识,使其能在极短时间内提供相似的准确性。

模型对比

以下是此项目提供的重新排序模型的对比:

模型名称层数隐藏尺寸参数量(百万)
jina-reranker-v1-base-en12768137.0
jina-reranker-v1-turbo-en638437.8
jina-reranker-v1-tiny-en438433.0

从中可以看出,jina-reranker-v1-turbo-en采用了6层37.8百万参数,为快速搜索和重新排序提供了平衡方案。而jina-reranker-v1-tiny-en则进一步强化了速度,凭借其4层33.0百万参数结构,达到了最快的推理速度,适合于对绝对最高的准确性要求较低的场景。

使用方法

  1. 通过Jina AI的Reranker API是最简单的使用方式。
curl https://api.jina.ai/v1/rerank \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -d '{
  "model": "jina-reranker-v1-tiny-en",
  "query": "Organic skincare products for sensitive skin",
  "documents": [
    "Eco-friendly kitchenware for modern homes",
    "Biodegradable cleaning supplies for eco-conscious consumers",
    "Organic cotton baby clothes for sensitive skin",
    "Natural organic skincare range for sensitive skin",
    "Tech gadgets for smart homes: 2024 edition",
    "Sustainable gardening tools and compost solutions",
    "Sensitive skin-friendly facial cleansers and toners",
    "Organic food wraps and storage solutions",
    "All-natural pet food for dogs with allergies",
    "Yoga mats made from recycled materials"
  ],
  "top_n": 3
}'
  1. 或者,可以使用最新版的sentence-transformers>=0.27.0库,通过pip安装:
pip install -U sentence-transformers

然后使用以下代码与模型交互:

from sentence_transformers import CrossEncoder

model = CrossEncoder("jinaai/jina-reranker-v1-tiny-en", trust_remote_code=True)
query = "Organic skincare products for sensitive skin"
documents = [
    "Eco-friendly kitchenware for modern homes",
    "Biodegradable cleaning supplies for eco-conscious consumers",
    "Organic cotton baby clothes for sensitive skin",
    "Natural organic skincare range for sensitive skin",
    "Tech gadgets for smart homes: 2024 edition",
    "Sustainable gardening tools and compost solutions",
    "Sensitive skin-friendly facial cleansers and toners",
    "Organic food wraps and storage solutions",
    "All-natural pet food for dogs with allergies",
    "Yoga mats made from recycled materials"
]

results = model.rank(query, documents, return_documents=True, top_k=3)
  1. 也可以使用transformers库通过编程方式与模型交互。
!pip install transformers
from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained(
    'jinaai/jina-reranker-v1-tiny-en', num_labels=1, trust_remote_code=True
)

query = "Organic skincare products for sensitive skin"
documents = [
    "Eco-friendly kitchenware for modern homes",
    "Biodegradable cleaning supplies for eco-conscious consumers",
    "Organic cotton baby clothes for sensitive skin",
    "Natural organic skincare range for sensitive skin",
    "Tech gadgets for smart homes: 2024 edition",
    "Sustainable gardening tools and compost solutions",
    "Sensitive skin-friendly facial cleansers and toners",
    "Organic food wraps and storage solutions",
    "All-natural pet food for dogs with allergies",
    "Yoga mats made from recycled materials"
]

sentence_pairs = [[query, doc] for doc in documents]
scores = model.compute_score(sentence_pairs)
  1. 还可以使用transformers.js库直接在JavaScript(浏览器、Node.js、Deno等)中运行模型。

通过NPM安装Transformers.js JavaScript库:

npm i @xenova/transformers

然后可以使用以下代码与模型互动:

import { AutoTokenizer, AutoModelForSequenceClassification } from '@xenova/transformers';

const model_id = 'jinaai/jina-reranker-v1-tiny-en';
const model = await AutoModelForSequenceClassification.from_pretrained(model_id, { quantized: false });
const tokenizer = await AutoTokenizer.from_pretrained(model_id);

async function rank(query, documents, {
    top_k = undefined,
    return_documents = false,
} = {}) {
    const inputs = tokenizer(
        new Array(documents.length).fill(query),
        { text_pair: documents, padding: true, truncation: true }
    )
    const { logits } = await model(inputs);
    return logits.sigmoid().tolist()
        .map(([score], i) => ({
            corpus_id: i,
            score,
            ...(return_documents ? { text: documents[i] } : {})
        })).sort((a, b) => b.score - a.score).slice(0, top_k);
}

const query = "Organic skincare products for sensitive skin"
const documents = [
    "Eco-friendly kitchenware for modern homes",
    "Biodegradable cleaning supplies for eco-conscious consumers",
    "Organic cotton baby clothes for sensitive skin",
    "Natural organic skincare range for sensitive skin",
    "Tech gadgets for smart homes: 2024 edition",
    "Sustainable gardening tools and compost solutions",
    "Sensitive skin-friendly facial cleansers and toners",
    "Organic food wraps and storage solutions",
    "All-natural pet food for dogs with allergies",
    "Yoga mats made from recycled materials",
]

const results = await rank(query, documents, { return_documents: true, top_k: 3 });
console.log(results);

性能评估

jina-reranker在3个关键基准测试中进行评估,以确保顶级性能和搜索相关性。

模型名称NDCG@10 (17 BEIR数据集)NDCG@10 (5 LoCo数据集)命中率 (LlamaIndex RAG)
jina-reranker-v1-base-en52.4587.3185.53
jina-reranker-v1-turbo-en49.6069.2185.13
jina-reranker-v1-tiny-en48.5470.2985.00
mxbai-rerank-base-v149.19-82.50
mxbai-rerank-xsmall-v148.80-83.69
ms-marco-MiniLM-L-6-v248.64-82.63
ms-marco-MiniLM-L-4-v247.81-83.82
bge-reranker-base47.89-83.03

NDCG@10是衡量排名质量的一种标准,分数越高表示搜索结果越好,而命中率则衡量相关文档出现在前10个搜索结果中的百分比。对于其他模型,由于不支持超过512个标记的长文档,因此没有LoCo数据集的结果。

更多详情请参考我们的基准测试表

联系

欢迎加入我们的Discord社区,与其他社区成员交流想法。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号