Project Icon

bert-ner-japanese

日本语固有表达识别,使用BERT模型实现

本项目利用BertForTokenClassification模型,实现高效的日本语固有表达识别,可识别八种类别,如人名、法人名和地名等,以满足多样化的语言处理需求。该项目基于东北大学的日本语BERT模型和stockmarkteam的Wikipedia数据集进行训练,通过安装transformers库等,即可实现快速识别,适合应用于IT和学术研究领域的文本分析。

nb-bert-base-ner - 挪威语BERT命名实体识别模型 适用NorNE数据集
BERTGithubHuggingfaceNorNE命名实体识别开源项目挪威语模型自然语言处理
nb-bert-base-ner是一个基于BERT的挪威语命名实体识别模型,通过NorNE数据集微调而成。此模型能够识别挪威语文本中的人名、地名等命名实体。开发者可借助Hugging Face的transformers库轻松集成和使用,项目还提供了简洁的示例代码,便于快速实现挪威语命名实体识别功能。
bert-base-japanese-v2 - 日语BERT预训练模型:全词屏蔽和Unidic分词
BERTGithubHuggingface全词掩码分词开源项目日语预训练模型模型维基百科
bert-base-japanese-v2是基于日语维基百科预训练的BERT模型,采用unidic-lite词典和全词屏蔽策略。模型架构包含12层、768维隐藏状态和12个注意力头。它结合MeCab和WordPiece算法进行分词,词表大小为32768。模型在512个token实例上进行了100万步训练,耗时约5天。该模型适用于多种日语自然语言处理任务,为研究人员和开发者提供了强大的日语语言理解工具。
sup-simcse-ja-large - 基于BERT的日语句向量模型与文本相似度分析工具
GithubHuggingfaceJSNLIsentence-transformers开源项目文本嵌入日本语文本相似度模型自然语言处理
该模型基于BERT-large-japanese-v2架构开发,通过JSNLI数据集训练完成。模型整合了sentence-transformers和HuggingFace Transformers框架,可实现日语文本的向量化表示和相似度分析。技术特点包括cls池化策略、1024维隐藏层和BFloat16数据格式,适用于日语自然语言处理任务。
bert4ner-base-chinese - 基于BERT的中文命名实体识别模型,具备高精度性能
BertSoftmaxGithubHuggingfacePEOPLEbert4ner中文实体识别开源项目模型
bert4ner-base-chinese项目是一个基于BERT的中文命名实体识别模型,在人民日报数据集上取得了高精度表现。通过BertSoftmax网络结构,能够准确识别文本中的人名、时间等实体信息。可通过nerpy库调用该模型,也支持无外部依赖的直接调用方式,适用于各种自然语言处理应用。
deberta-v2-base-japanese-char-wwm - 日语DeBERTa V2模型实现字符级遮蔽与预训练
DeBERTa V2GithubHuggingfacetransformers字符级别开源项目日本語模型自然语言处理
该项目介绍了日语DeBERTa V2 base模型,该模型在日语Wikipedia、CC-100和OSCAR数据集上进行字符级分词和整体词遮蔽的预训练,可用于掩码语言建模及下游任务微调,采用了22,012个字符级子词的sentencepiece分词模型,通过transformers库进行训练。
sentence-bert-base-ja-mean-tokens-v2 - 日语句向量模型SBERT-ja-v2支持高精度语义相似度计算
GithubHuggingfaceSentence-BERT开源项目文本嵌入日本語机器学习模型自然语言处理
sentence-bert-base-ja-mean-tokens-v2是一个基于BERT的日语句向量模型,采用MultipleNegativesRankingLoss训练方法,精度较前版本提升1.5-2个百分点。模型基于cl-tohoku/bert-base-japanese-whole-word-masking预训练,主要用于句子相似度计算等任务。它提供简洁的Python接口,支持批量处理,可应用于多种自然语言处理场景。
bert-base-NER-uncased - BERT基础模型应用于命名实体识别的开源项目
GithubHuggingfaceMIT许可证免责条款开源许可开源项目模型版权声明软件分发
该项目基于BERT的bert-base-uncased模型,通过微调实现了命名实体识别(NER)功能。模型能有效识别文本中的实体,支持多种语言和实体类别,包括人名、地名、组织机构等。在多个NER数据集上展现了优异性能,模型参数规模约1.1亿。项目为自然语言处理研究人员和开发者提供了一个强大的工具,可用于提取各类文本中的关键实体信息,适用于信息抽取、问答系统等多种应用场景。
arabic-ner - 阿拉伯语BERT命名实体识别模型支持九大类型
BERTGithubHugging FaceHuggingface命名实体识别开源项目模型自然语言处理阿拉伯语
该阿拉伯语命名实体识别模型基于BERT预训练,可识别9种实体类型,包括人名、组织、地点等。模型使用37.8万标记的语料训练,在3万标记验证集上F1分数达87%。项目提供完整示例,适用于多种阿拉伯语自然语言处理任务。
JaColBERTv2.5 - 优化资源应用的日语信息检索模型
GithubHuggingfaceJaColBERTv2.5多语言模型开源项目数据集日本语检索器模型模型权重
该模型使用全新的训练方法,基于40%的数据成功创建了高效的日语信息检索系统。在多个数据集上表现优异,特别是改进的多向量检索方法,在资源受限的情况下提供卓越性能,优于包括BGE-M3在内的多语言模型,适合资源有限的应用场景。
bert-base-indonesian-NER - BERT模型驱动的印度尼西亚语命名实体识别系统
GithubHuggingfaceMIT印尼语开源项目标记分类模型许可证语言
bert-base-indonesian-NER是一个基于BERT架构的印度尼西亚语命名实体识别模型。该模型经过优化,能够准确识别印尼语文本中的人名、地名和组织机构等实体。作为印尼语自然语言处理的重要工具,此项目为本地化NLP技术的发展提供了有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号