Project Icon

Data-science

数据科学项目的综合资源库和实践指南

Data-science项目汇集了丰富的数据科学资源,涵盖MLOps、数据管理、测试和生产力工具等领域。通过文章、代码和视频教程,该项目全面展示了数据科学工作流程,从项目管理到部署。它为数据科学家和机器学习工程师提供了提高效率、构建可靠项目的实用指南。

Data Science

View on GitHub Daily Data Science Tips View on YouTube

Collection of useful data science topics along with articles and videos.

Subscribe to:

  • CodeCut for articles and bite-sized Python tips in your mailbox
  • My YouTube channel for videos related to Python and data science

How to Download the Code in This Repository to Your Local Machine

To download the code in this repo, you can simply use git clone

git clone https://github.com/khuyentran1401/Data-science

Contents

  1. MLOps
  2. Data Management Tools
  3. Testing
  4. Productive Tools
  5. Python Helper Tools
  6. Tools for Deployment
  7. Speed-up Tools
  8. Math Tools
  9. Machine Learning
  10. Natural Language Processing
  11. Computer Vision
  12. Time Series
  13. Feature Engineering
  14. Visualization
  15. Mathematical Programming
  16. Scraping
  17. Python
  18. Logging and Debugging
  19. Linear Algebra
  20. Data Structure
  21. Statistics
  22. Web Applications
  23. Share Insights
  24. Cool Tools
  25. Learning Tips
  26. Productive Tips
  27. VSCode
  28. Book Review
  29. Data Science Portfolio

MLOps

TitleArticleRepositoryVideo
Stop Hard Coding in a Data Science Project – Use Configuration Files Instead🔗🔗🔗
Poetry: A Better Way to Manage Python Dependencies🔗🔗
Git for Data Scientists: Learn Git through Practical Examples🔗🔗
Introduction to Weight & Biases: Track and Visualize your Machine Learning Experiments in 3 Lines of Code🔗🔗
Kedro — A Python Framework for Reproducible Data Science Project🔗🔗
Orchestrate a Data Science Project in Python With Prefect🔗🔗
Orchestrate Your Data Science Project with Prefect 2.0🔗🔗🔗
DagsHub: a GitHub Supplement for Data Scientists and ML Engineers🔗🔗
4 pre-commit Plugins to Automate Code Reviewing and Formatting in Python🔗🔗🔗
BentoML: Create an ML Powered Prediction Service in Minutes🔗🔗🔗
How to Structure a Data Science Project for Maintainability (with DVC)🔗🔗🔗
How to Structure an ML Project for Reproducibility and Maintainability (with Prefect)🔗🔗
GitHub Actions in MLOps: Automatically Check and Deploy Your ML Model🔗🔗
Create Robust Data Pipelines with Prefect, Docker, and GitHub🔗🔗
Create a Maintainable Data Pipeline with Prefect and DVC🔗🔗
Build a Full-Stack ML Application With Pydantic And Prefect🔗🔗🔗
Streamline Code Updates with DVC and GitHub Actions🔗🔗🔗
Create Observable and Reproducible Notebooks with Hex🔗🔗🔗
Build Reliable Machine Learning Pipelines with Continuous Integration🔗🔗🔗
Automate Machine Learning Deployment with GitHub Actions🔗🔗🔗
How to Build a Fully Automated Data Drift Detection Pipeline🔗🔗🔗

Data Management Tools

TitleArticleRepositoryVideo
Introduction to DVC: Data Version Control Tool for Machine Learning Projects🔗🔗🔗
Great Expectations: Always Know What to Expect From Your Data🔗🔗
Validate Your pandas DataFrame with Pandera🔗🔗🔗
Introduction to Schema: A Python Libary to Validate your Data🔗🔗
How to Create Fake Data with Faker🔗🔗
Hypothesis and Pandera: Generate Synthesis Pandas DataFrame for Testing🔗🔗🔗
What is dbt (data build tool) and When should you use it?🔗🔗🔗
Streamline dbt Model Development with Notebook-Style Workspace🔗🔗🔗

Testing

TitleArticleRepositoryVideo
Pytest for Data Scientists🔗🔗🔗
4 Lessor-Known Yet Awesome Tips for Pytest🔗🔗
DeepDiff — Recursively Find and Ignore Trivial Differences Using Python🔗🔗
Checklist — Behavioral Testing of NLP Models🔗🔗
Detect Defects in a Data Pipeline Early with Validation and Notifications🔗🔗🔗
Write Readable Tests for Your Machine Learning Models with Behave🔗🔗🔗

Productive Tools

TitleArticleRepository
3 Tools to Track and Visualize the Execution of your Python Code🔗🔗
2 Tools to Automatically Reload when Python Files Change🔗🔗
3 Ways to Get Notified with Python🔗🔗
How to Create Reusable Command-Line
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号