Project Icon

edge-connect

通过生成对抗网络模型提高细节再现的图像修复方法

EdgeConnect是一种新的图像修复方法,通过生成对抗网络模型提高细节再现。该方法包含两个步骤:首先生成图像中缺失区域的边缘,然后根据生成的边缘信息填补图像。此方法适用于Places2、CelebA及Paris Street-View等数据集。EdgeConnect引入新的边缘生成和图像补全技术,使修复结果更为真实自然。该项目基于Python和PyTorch实现,支持CUDA加速,提供完整的训练、测试和评估指南,并且免费提供预训练模型下载使用。

AOT-GAN-for-Inpainting - 基于聚合上下文变换的高分辨率图像修复技术
AOT-GANGithub上下文转换图像修复开源项目生成对抗网络高分辨率
AOT-GAN for Inpainting项目提出了一种创新的图像修复模型,旨在解决高分辨率图像中大面积缺失区域的修复问题。该模型结合了聚合上下文变换(AOT)块和SoftGAN技术,分别增强了上下文推理能力和纹理合成质量。AOT块能够有效捕捉远距离上下文信息和丰富的特征模式,而SoftGAN则通过改进判别器训练,提高了真实和合成图像细节的识别能力。这种方法在面部、物体和场景图像的高质量修复上取得了显著成效。
edgeOfRealism - 逼真图像生成工具,实现照片级细节展示
CreativeML-OpenRAIL-MGithubHuggingfacediffusers开源项目技术热点模型逼真高细节
凭借稳定扩散技术,该项目通过文本到图像的方式创造高度逼真的图像,在细节丰富的创作与研究中表现出色,并在多个领域拥有应用前景。
GFPGAN - 提升图像细节和自然效果的实用人脸修复算法
AI绘图GFPGANGithub图像处理开源项目生成式对抗网络面部修复
GFPGAN利用预训练的StyleGAN2等人脸生成网络进行盲人脸修复。项目提供多种在线演示,包括Huggingface Gradio和Colab,支持增强背景区域,适用于各种质量的图像输入。最新1.4版本生成更多细节并保持身份一致性。无需CUDA扩展的清洁版本适用于多平台运行。
control_v11p_sd15_inpaint - ControlNet技术驱动的智能图像修复工具
ControlNetGithubHuggingfaceInpaintStable Diffusion图像生成开源项目条件控制模型
control_v11p_sd15_inpaint是一款基于ControlNet技术的图像修复工具。它通过精确控制Stable Diffusion等扩散模型,实现高质量的图像修复和编辑。该模型支持边缘图、分割图和关键点等多种输入条件,为图像处理提供多样化的选择。这一工具适用于个人设备和大型计算集群,具有良好的可训练性和易用性。
RestoreFormerPlusPlus - 先进的高质量人脸图像修复技术
AIGithubRestoreFormer++人脸修复图像处理开源项目深度学习
RestoreFormerPlusPlus是一种高级人脸图像修复方法,采用全空间注意力机制和扩展退化模型(EDM)提高修复效果的保真度和真实感。该方法利用丰富的上下文信息和高质量先验,提升了对真实场景的适应性和通用性。项目开源了预训练模型、推理代码和在线演示,为研究和开发人员提供了实现高质量人脸图像修复的便捷工具。
image-restoration-sde - 创新图像恢复方法 结合SDE和扩散模型的IR-SDE与Refusion
GithubIR-SDERefusionSDE图像恢复开源项目深度学习
该项目提出IR-SDE和Refusion两种图像恢复方法。IR-SDE采用均值回复随机微分方程,在多项任务中达到最优性能。Refusion整合潜空间扩散模型,可处理大尺寸真实图像。这些技术适用于合成和实际数据集,有效解决图像去雨、去雾、去阴影等问题。项目开源完整PyTorch实现代码,并提供预训练模型和使用指南。
daclip-uir - 利用视觉语言模型控制实现通用图像修复
AI技术DA-CLIPGithub图像恢复开源项目视觉语言模型训练数据集
DA-CLIP模型通过视觉语言控制实现通用图像修复。用户可以通过多种方式使用预训练模型,如Gradio应用测试图像,或通过提供的代码示例和数据准备步骤进行训练和评估。该项目提供解决多种真实世界图像退化问题的方法,并提供多种预训练模型供下载。功能和性能的持续更新显著提升了其在图像修复中的适用性。
epicrealism_pureevolutionv5-inpainting - Stable Diffusion专用的高质量图像修复模型
DiffusersGithubHuggingface人工智能开源许可开源项目机器学习模型深度学习
epicrealism_pureevolutionv5-inpainting是一个为Stable Diffusion开发的图像修复模型。该模型能够修复和增强图像中的缺失或损坏部分,提供逼真和自然的处理效果。通过先进的机器学习技术,模型可以理解图像上下文,生成与周围环境协调的修复内容。适用于多种图像编辑和修复任务,包括去除物体、修复老照片和填充缺失区域。模型支持多种常见图像格式,处理速度快,在图像修复质量上优于同类产品。
Restormer - 高效Restormer Transformer实现高分辨率图像修复
GithubRestormerTransformer图像去噪图像去雨开源项目高分辨率图像恢复
研究提出了一种名为Restormer的高效Transformer模型,通过多头注意力和前馈网络设计,实现了长距离像素交互,适用于大图像处理。该模型在图像去雨、单图像运动去模糊、散焦去模糊(单图像和双像素数据)和高斯及真实图像去噪等任务中表现优异。Restormer的训练代码和预训练模型已发布,并被选为CVPR 2022的口头报告。用户可通过Colab或命令行测试预训练模型。
stable-diffusion-v1-5-inpainting - 稳定扩散修复模型,提升图像生成与修复能力
GithubHuggingfaceStable Diffusion Inpainting人工智能绘画创意图片生成图像修复开源项目文本生成图像模型
Stable Diffusion Inpainting是一种基于潜在扩散模型的图像生成工具,通过文本提示生成高质量图像,支持遮罩修复。其在LAION-5B数据集上进行训练,应用于艺术和设计领域,具备生成逼真图像的能力,但在复杂文本处理上存在局限。遵循CreativeML OpenRAIL-M许可,可保证合理安全使用。了解训练和应用场景将有助于更有效地进行创新项目开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号