Project Icon

CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k

CLIP架构多语言视觉语言模型实现高效零样本图像分类与检索

这是一个基于CLIP架构的多语言视觉语言模型,在LAION-5B数据集上训练。模型结合了冻结的ViT-H/14视觉结构和XLM-RoBERTa大型文本模型,在多语言零样本图像分类和检索任务中表现优异。适用于零样本图像分类、图文检索等应用,也支持下游任务微调。该模型在英语及其他语言中均展现出强大性能,为跨语言视觉AI应用提供了有力支持。

DFN2B-CLIP-ViT-B-16 - 自动化数据过滤技术优化对比学习模型
CLIPGithubHuggingfaceOpenCLIPZero-Shot对比学习开源项目数据过滤模型
DFN2B-CLIP-ViT-B-16通过Data Filtering Networks从12.8B对未筛选的数据中选出优质样本,提升CLIP模型训练效果。该模型在ImageNet 1k、CIFAR-10等数据集上表现优异,平均精度为0.609232,支持OpenCLIP,增强了图像与文本匹配能力。特别适合需要提升零样本图像分类准确性的用户。
vit_large_patch14_clip_224.openai_ft_in12k_in1k - 视觉变压器用于图像分类和特征嵌入的高级应用
CLIPGithubHuggingfaceVision TransformerWIT-400M图像分类开源项目模型模型比较
OpenAI开发的视觉变压器(ViT)模型在WIT-400M图像文本对上通过CLIP进行预训练,并在ImageNet-12k和ImageNet-1k上微调,适用于图像分类与特征嵌入生成。模型运行在timm库中,具有高参数量与计算效率,适用于高精度图像识别,支持实时与批量处理应用。
siglip-base-patch16-224 - SigLIP改进CLIP模型 实现更高效的零样本图像分类和检索
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是一种基于CLIP改进的多模态预训练模型,采用sigmoid损失函数优化语言-图像学习。该模型在WebLI数据集上以224x224分辨率预训练,适用于零样本图像分类和图像-文本检索任务。相比CLIP,SigLIP支持更大批量处理,且在小批量场景下表现更优。用户可通过Transformers库轻松加载和使用SigLIP模型,实现灵活高效的多模态应用。
fashion-clip - 专为时尚领域优化的对比语言视觉学习模型
CLIPFashionCLIPGithubHugging Face开源项目时尚行业模型
FashionCLIP是一个为时尚行业优化的CLIP模型,用于提升商品检索、分类和时尚分析的表现。通过超过70万对图像和文本数据进行微调,FashionCLIP在零样本场景下表现出色。更新版FashionCLIP 2.0采用更多训练数据,显著提高了FMNIST、KAGL和DEEP数据集的性能。项目提供开源代码和模型权重,可在Hugging Face上获取,并支持多种API和教程便于上手。
blip-image-captioning-large - BLIP框架驱动的先进图像描述模型
BLIPGithubHuggingface图像描述多模态学习开源项目模型自然语言处理视觉语言预训练
blip-image-captioning-large是基于BLIP框架的图像描述模型,采用ViT大型骨干网络和COCO数据集预训练。它支持条件和无条件图像描述,在图像-文本检索、图像描述和视觉问答等任务中表现卓越。该模型具有出色的泛化能力,支持CPU和GPU(含半精度)推理,为图像理解和生成研究提供了有力工具。
convnext_xxlarge.clip_laion2b_soup_ft_in1k - 大规模预训练的高性能图像分类模型
ConvNeXtGithubHuggingfaceImageNet-1kLAIONtimm图像分类开源项目模型
ConvNeXt XXLarge是一款基于ConvNeXt架构的高性能图像分类模型。该模型在LAION-2B数据集上进行CLIP预训练,随后在ImageNet-1k上微调,拥有8.46亿参数。在256x256的图像输入下,Top-1准确率达到88.612%。除图像分类外,该模型还支持特征图提取和图像嵌入生成,可为多种计算机视觉任务提供强大支持。
siglip-base-patch16-384 - 改进型CLIP架构的图像文本预训练模型
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型深度学习计算机视觉
SigLIP是基于CLIP架构的多模态模型,通过Sigmoid损失函数优化了图像文本预训练过程。模型在WebLI数据集完成预训练,支持零样本图像分类和文本检索任务。其特点是无需全局相似度标准化,既可支持大规模批量训练,也适用于小批量场景。
OpenAI-CLIP - 从零开始实现CLIP模型:探索文本与图像的多模态关联
CLIPGithubOpenAI图像编码器多模态开源项目文本编码器
本项目实现了CLIP模型,基于PyTorch进行开发,通过训练文本和图像数据,探索其相互关系。详细的代码指南和实用工具展示了模型在自然语言监督任务中的表现和实际应用,适合多模态学习的研究者和开发者使用。
siglip-large-patch16-256 - SigLIP模型采用优化损失函数实现图像文本多模态任务
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是CLIP模型的改进版本,使用sigmoid损失函数进行语言-图像预训练。该模型在WebLI数据集上以256x256分辨率预训练,适用于零样本图像分类和图像-文本检索任务。通过优化损失函数,SigLIP实现了更高性能和更大批量规模。模型支持原始使用和pipeline API调用,在多项评估中展现出优于CLIP的表现。SigLIP为图像-文本多模态任务提供了新的解决方案。
owlv2-large-patch14 - 开源零样本对象检测模型,支持多文本查询
AI研究CLIPGithubHuggingfaceOWLv2图像识别开源项目模型目标检测
OWLv2模型是一种零样文本感知对象检测模型,使用CLIP作为多模态骨干,通过结合视觉和文本特征实现开词汇检测。模型去除了视觉模型的最终token池化层,并附加分类和框头,能够处理多文本查询,扩展了图像识别的应用潜力。研究者通过重新训练和微调CLIP,提高了其在公开检测数据集上的性能,有助于探讨计算机视觉模型的鲁棒性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号