Project Icon

CLIP-convnext_base_w-laion_aesthetic-s13B-b82K

LAION-5B训练的ConvNeXt-Base CLIP模型

ConvNeXt-Base架构的CLIP模型在LAION-5B子集上完成训练,支持256x256和320x320两种图像分辨率。在ImageNet零样本分类评测中取得70.8%-71.7%的top-1准确率,样本效率超过同规模ViT-B/16模型。该模型主要用于研究领域,可执行零样本图像分类和图文检索等任务。

ViT-L-14-CLIPA-datacomp1B - CLIPA-v2模型实现低成本高性能零样本图像分类
CLIPAGithubHuggingfaceOpenCLIP对比学习开源项目模型视觉语言模型零样本图像分类
ViT-L-14-CLIPA-datacomp1B是一个基于CLIPA-v2架构的视觉-语言模型,在datacomp1B数据集上训练。该模型采用对比学习方法,能够进行零样本图像分类,在ImageNet上实现81.1%的准确率。通过OpenCLIP库,用户可以方便地进行图像和文本的特征编码。这个模型不仅性能优异,还具有训练成本低的特点,为计算机视觉研究提供了新的发展方向。
DFN5B-CLIP-ViT-H-14 - 高性能图像-文本对比学习模型
CLIPDFN-5BGithubHuggingface图像分类开源项目模型深度学习计算机视觉
DFN5B-CLIP-ViT-H-14是一个基于CLIP架构的图像-文本对比学习模型,通过DFN技术从430亿图像-文本对中筛选出50亿高质量样本进行训练。模型在39个图像分类基准测试中表现优异,平均准确率达69.8%。支持零样本图像分类和跨模态检索,可与OpenCLIP无缝集成。这一模型为计算机视觉和自然语言处理领域提供了有力支持,适用于多种研究和应用场景。
clip-vit-base-patch16 - CLIP-ViT:基于Transformers的零样本图像分类模型
GithubHuggingfaceONNXTransformers.js图像分类开源项目文本嵌入模型视觉嵌入
clip-vit-base-patch16是OpenAI CLIP模型的一个变种,专注于零样本图像分类任务。这个模型使用ONNX格式的权重,可与Transformers.js库无缝集成,方便在Web环境中应用。它不仅提供了易用的pipeline API用于图像分类,还支持独立的文本和图像嵌入计算功能。该模型在处理各种图像分析和跨模态任务时,能够在性能和计算效率之间保持良好平衡。
vit_base_patch16_clip_384.laion2b_ft_in12k_in1k - LAION-2B预训练的Vision Transformer图像分类模型
GithubHuggingfaceImageNetLAION-2BVision Transformer图像分类开源项目模型深度学习
该模型基于Vision Transformer架构,在LAION-2B数据集上预训练,随后在ImageNet-12k和ImageNet-1k上微调。模型接受384x384像素的输入图像,包含8690万个参数。除图像分类外,还可用于生成图像特征嵌入。通过timm框架实现,提供灵活配置和简便使用,适用于多种计算机视觉任务。
TinyCLIP-ViT-40M-32-Text-19M-LAION400M - 基于亲和力模仿和权重继承的CLIP模型压缩方法
GithubHuggingfaceLAION400MTinyCLIP图像识别开源项目模型模型压缩深度学习
TinyCLIP是一种用于压缩大规模语言-图像预训练模型的跨模态蒸馏方法,采用亲和力模仿和权重继承技术。实验显示,TinyCLIP ViT-45M/32使用ViT-B/32一半的参数达到相似的零样本性能;TinyCLIP ResNet-19M在参数量减少50%的情况下,推理速度提升2倍,在ImageNet数据集上实现56.4%的准确率。
Long-CLIP - CLIP模型长文本处理能力升级 显著提升图像检索效果
AI模型CLIPGithubLong-CLIP开源项目文本-图像检索零样本分类
Long-CLIP项目将CLIP模型的最大输入长度从77扩展到248,大幅提升了长文本图像检索性能。在长标题文本-图像检索任务中,R@5指标提高20%;传统文本-图像检索提升6%。这一改进可直接应用于需要长文本处理能力的各类任务,为图像检索和生成领域带来显著进展。
DFN5B-CLIP-ViT-H-14-378 - 大规模数据筛选优化的视觉语言预训练系统
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN5B-CLIP-ViT-H-14-378是一款基于CLIP架构的视觉语言模型,采用数据过滤网络(DFN)技术从43B未筛选的图像-文本对中提取5B高质量数据进行训练。该模型在多项视觉任务中表现优异,平均准确率达70.94%。支持零样本图像分类,可与OpenCLIP框架无缝集成,为计算机视觉和自然语言处理研究提供了高性能的预训练模型基础。
CLIP-ViT-B-32-256x256-DataComp-s34B-b86K - 基于DataComp训练的CLIP多模态视觉语言模型
CLIPDataComp-1BGithubHuggingfaceViT-B-32图像分类开源项目机器学习模型
CLIP ViT-B/32是一个在DataComp-1B数据集上训练的视觉语言模型,通过OpenCLIP框架实现。模型在ImageNet-1k分类任务中实现72.7%零样本准确率,支持图像分类、跨模态检索等研究任务。该开源项目为计算机视觉研究提供了重要的实验基础
clip-japanese-base - 日语CLIP模型,支持图像和文本的零样本分类与检索
BERTCLIPGithubHuggingface图像分类开源项目文本检索模型视觉任务
该日语CLIP模型由LY Corporation开发,通过大约10亿对图文数据进行训练,适用于图像和文本的零样本分类与检索。该模型采用Eva02-B作为图像编码器,并使用12层BERT作为文本编码器。模型在图像分类中的准确率达到0.89,检索召回率为0.30。在评估中,使用了STAIR Captions和ImageNet-1K等数据集,表现优秀。模型已开源,遵循Apache 2.0协议。
CLIP-ViT-L-14-DataComp.XL-s13B-b90K - 基于DataComp-1B数据集训练的零样本图像分类器
CLIPDataComp-1BGithubHuggingfaceOpenCLIP多模态模型开源项目模型零样本图像分类
CLIP ViT-L/14是一个基于DataComp-1B大规模数据集训练的多模态模型。在ImageNet-1k上达到79.2%的零样本分类准确率,可用于图像分类、检索等任务。该模型主要面向研究社区,旨在促进对零样本和任意图像分类的探索。由stability.ai提供计算资源支持,不建议直接用于部署或商业用途。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号