Project Icon

larger_clap_music

大规模音乐音频分类及特征提取的模型解决方案

通过对比语言音频预训练技术,CLAP模型实现高效的音频和文本特征提取和分类,适用于无监督学习环境。模型兼具SWINTransformer和RoBERTa的优点,可用来评估音频与文本间的相似性,且能满足多种音频分类和嵌入需求。

larger_clap_music项目简介

项目概述

larger_clap_music是一个针对音乐优化的CLAP模型。CLAP,即对比语言-音频预训练,是一种神经网络模型,类似于CLIP用于图像的方法。该模型经过精心训练,可以处理音频与文本配对的数据,并在无需直接为特定任务优化的情况下,预测最相关的文本片段。主要技术上,CLAP模型使用SWINTransformer从日志Mel谱图输入中提取音频特征,并使用RoBERTa模型提取文本特征。随后,这些文本和音频特征被投射到相同维度的潜在空间中,并通过投影特征之间的点积计算相似度得分。

功能与应用

零样本音频分类

larger_clap_music模型可以用于零样本音频分类,这意味着无需额外的训练数据即可识别音频类别。在实际应用中,可以使用Python代码中的pipeline方法,快速将音频样本分类为不同的类别。例如,给定音频样本,模型可以判断它是"狗叫声"还是"吸尘器声音"。

from datasets import load_dataset
from transformers import pipeline

dataset = load_dataset("ashraq/esc50")
audio = dataset["train"]["audio"][-1]["array"]

audio_classifier = pipeline(task="zero-shot-audio-classification", model="laion/larger_clap_music")
output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"])
print(output)
>>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}]

获取音频和文本嵌入

除了分类功能,larger_clap_music模型还允许用户提取音频和文本的特征嵌入。通过ClapModelClapProcessor在CPU或GPU上运行模型,可以获得音频样本的特征嵌入。这样的嵌入可以应用于更复杂的音频处理任务中,如音频-文本对齐或语义分析。

在CPU上运行示例代码:

from datasets import load_dataset
from transformers import ClapModel, ClapProcessor

librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[0]

model = ClapModel.from_pretrained("laion/larger_clap_music")
processor = ClapProcessor.from_pretrained("laion/larger_clap_music")

inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt")
audio_embed = model.get_audio_features(**inputs)

在GPU上运行示例代码:

from datasets import load_dataset
from transformers import ClapModel, ClapProcessor

librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[0]

model = ClapModel.from_pretrained("laion/larger_clap_music").to(0)
processor = ClapProcessor.from_pretrained("laion/larger_clap_music")

inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt").to(0)
audio_embed = model.get_audio_features(**inputs)

项目引用

如果在工作中使用此模型,请引用原始论文:

@misc{https://doi.org/10.48550/arxiv.2211.06687,
  doi = {10.48550/ARXIV.2211.06687},
  url = {https://arxiv.org/abs/2211.06687},
  author = {Wu, Yusong and Chen, Ke and Zhang, Tianyu and Hui, Yuchen and Berg-Kirkpatrick, Taylor and Dubnov, Shlomo},
  keywords = {Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
  title = {Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation},
  publisher = {arXiv},
  year = {2022},
  copyright = {Creative Commons Attribution 4.0 International}
}

通过该项目,开发者可以在音乐和音频分析领域实现更加高效的创新应用,特别是在需要音频与文本互动和分类的场景中。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号