Project Icon

Meta-Llama-3-70B-Instruct-abliterated-v3.5-IMat-GGUF

提升量化效率及IMatrix集成以增强文本生成性能

本项目应用Llama.cpp的量化技术结合IMatrix数据集,对Meta-Llama-3-70B-Instruct-abliterated-v3.5模型进行优化。支持BF16到Q2_K等多种量化格式,用户可根据需求选择下载不同版本,适用于多种文本生成场景。IMatrix集成提升了低比特位的性能表现,适合现代高效计算需求。提供全面的下载指南和FAQ,帮助用户有效地理解和使用文件,实现文本生成任务的高效推理。

gemma-2-9b-it-abliterated-GGUF - 文本生成性能优化的多种量化方法
ARM芯片GithubHuggingfacegemma-2-9b-it-abliterated嵌入/输出权重开源项目文本生成模型量化
该项目使用llama.cpp进行gemma-2-9b-it-abliterated模型的多种量化实现,能够适应不同的内存和硬件需求。用户可根据设备的RAM和GPU VRAM选择适合的模型文件大小。项目支持多种量化格式,如Q5_K_M和IQ3_M等,以满足不同的性能需求。通过huggingface-cli,用户可以轻松下载特定量化模型,并实现高效推理。建议在LM Studio中运行,并分享使用体验,以帮助优化模型质量和性能。
Meta-Llama-3-8B-Instruct - Meta推出Llama 3系列大型语言模型
GithubHuggingfaceLlama 3人工智能元模型大型语言模型开源项目模型自然语言生成
Llama 3是Meta开发的新一代大型语言模型系列,提供8B和70B两种参数规模。该模型针对对话场景进行优化,在行业基准测试中表现出色。Llama 3采用优化的Transformer架构,支持8k上下文长度,适用于助手式聊天和多种自然语言生成任务。模型开发过程注重提升实用性和安全性,可用于商业及研究目的。
Llama-3-8B-Instruct-DPO-v0.1-GGUF - Llama-3指令型语言模型的GGUF量化版本
GGUFGithubHuggingfaceLlama-3人工智能开源项目文本生成模型量化模型
该项目提供Llama-3-8B-Instruct-DPO-v0.1模型的GGUF格式量化版本,支持2至8位多种位宽。模型采用ChatML提示模板,兼容多种GGUF客户端和库,如llama.cpp和LM Studio。作为文本生成模型,它为本地部署提供了高性能和灵活的选择。
Llama-3.1-8B-Instruct - Meta推出的多语言大规模语言模型Llama 3.1
GithubHuggingfaceLlama 3.1Meta人工智能多语言大语言模型开源项目模型
Llama-3.1-8B-Instruct是Meta开发的多语言大规模语言模型,支持8种语言的对话和自然语言生成。模型采用优化的Transformer架构,具有128K上下文长度,可用于商业和研究领域的文本及代码生成等任务。该模型遵循Llama 3.1社区许可,用户应确保合规使用。
Llama-3.1-70B-Instruct - Meta推出的多语言大规模语言模型 支持商业与研究应用
GithubHuggingfaceMeta-Llama-3.1-70B多语言大语言模型开源项目指令微调模型预训练
Llama-3.1-70B-Instruct是Meta开发的多语言大型语言模型,支持8种语言,具有128k上下文窗口。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练,提升对话效果。支持文本和代码生成等自然语言任务,适用于商业和研究领域。该模型还可用于改进其他AI模型,包括合成数据生成和知识蒸馏。
aya-23-8B-GGUF - 更精细的文本生成量化选项分析
GithubHuggingfacetransformers开源项目文本生成模型质心量化
项目使用最先进的llama.cpp imatrix量化技术,支持多语言文本生成。多种量化格式,例如Q8_0和紧凑型IQ系列,提供应用的灵活性。用户依据硬件选择文件,以优化性能。创新量化处理为多语言文本生成提供了更高效的实现路径。
Halu-8B-Llama3-v0.35-GGUF - Halu-8B-Llama3-v0.35量化版本选择指南,助力性能优化
GithubHalu-8B-Llama3-v0.35Huggingfacehuggingface-clitransformers开源项目文本生成模型量化
项目Halu-8B-Llama3-v0.35提供多种量化版本,通过不同的量化类型优化模型性能,以适应各类RAM和VRAM的需求。可选择K-quants或I-quants,满足特定场景下的性能需求。高质量的I-quants适用于CPU和Apple Metal,性能优于传统K-quants但不兼容Vulcan,并附有详细的性能图表和量化指南,帮助选择适合的量化版本。
Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - Llama-3.1-8B-Lexi开源量化模型概览
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2开源项目权重模型模型文件量化高质量
项目介绍了Llama-3.1-8B-Lexi不同量化模型版本,涵盖从高性能到轻量化版本。基于llama.cpp的imatrix量化选项,模型支持在LM Studio中运行。项目提供从完整F32权重到轻量化IQ2_M版本的多种选择,适合不同内存及质量需求的用户,并提供详细的下载和性能指引,帮助在系统RAM与GPU VRAM间找到平衡。
Nemotron-Mini-4B-Instruct-GGUF - 量化模型应用指南与选择推荐
项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。
codegemma-1.1-7b-it-GGUF - 文本生成的多样化量化模型选择
GithubHugging FaceHuggingfacetransformers开源项目文本生成模型模型下载量化
项目使用llama.cpp进行模型量化,提供多种模型版本以优化文本生成性能。用户可以依据硬件配置选择合适的模型版本,推荐选用Q6_K等高质量量化格式。多样化的模型版本在内存占用和性能表现之间提供灵活选择,适用于多种硬件平台。I-quant模型在较低量化级别上表现优异,适合需要高效运行的场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号