Project Icon

flan-t5-base-VG-factual-sg

FACTUAL数据集驱动的flan-t5场景图解析模型

flan-t5-base-VG-factual-sg模型采用flan-t5架构,通过VG数据集预训练和FACTUAL数据集微调,实现高效的场景图解析。该模型在文本场景图解析方面展现出准确性和一致性,为计算机视觉和自然语言处理领域的研究与应用提供重要工具。使用此模型时,建议研究者引用相关学术文献以支持原创工作。

t5-base-qg-hl - 基于T5架构的问答生成模型
GithubHuggingfacePythonT5开源项目模型模型训练问题生成高亮标记
该模型采用T5-base架构,专注于生成基于答案的问句。通过在文本中使用<hl>标记来突出答案范围,并以</s>结束文本,即可生成相关问题。这一工具提供了直观的使用体验,适合需要自动生成理解型问题的场景,有助于提高文本处理效率。
VLM2Vec-Full - 视觉语言模型VLM2Vec的多模态嵌入训练方法
GithubHuggingfaceTIGER-LabVLM2Vec多模态嵌入对比学习开源项目模型视觉语言模型
VLM2Vec在Phi-3.5-V模型中引入EOS标记,实现跨多模态输入的统一嵌入表达,高效结合文本与图像。通过对比学习在MMEB-train数据集上训练,并在36个数据集上进行评估,Lora训练方式表现最佳。项目提供模型检查点及完整训练记录,供用户在GitHub仓库克隆下载,通过代码实现文本与图像的嵌入和相似度计算,助力模型运用。
llava-v1.5-7b-llamafile - LLaVA模型实现图像理解与自然语言交互的多模态AI
GithubHuggingfaceLLaVA人工智能多模态模型开源项目机器学习模型自然语言处理
LLaVA-v1.5-7b-llamafile作为一个开源多模态AI模型,通过微调LLaMA/Vicuna而成。它整合了图像理解和自然语言处理功能,能够执行图像相关指令和进行对话。该模型于2023年9月推出,主要用于研究大型多模态模型和聊天机器人。LLaVA的训练数据包括558K图像-文本对和多种指令数据,在12个基准测试中表现优异。这个模型为计算机视觉和自然语言处理领域的研究人员提供了探索AI前沿应用的有力工具。
Multimodal-GPT - 整合视觉与语言功能的多模态对话机器人
GithubOpenFlamingo多模态GPT开源项目联合训练视觉指令语言模型
Multimodal-GPT是一个基于OpenFlamingo多模态模型的项目,通过结合视觉指令和语言指令数据的联合训练,有效提升模型性能。该项目支持VQA、图像描述、视觉推理、文本OCR和视觉对话等多种数据类型,并利用LoRA进行参数高效的微调。探索Multimodal-GPT的广泛应用可能性。
semantic-segmentation - 提供丰富数据集和易于定制的语义分割模型
GithubPyTorchSOTASemantic Segmentation开源项目数据集模型库
该项目提供易于使用和定制的SOTA语义分割模型,支持多种任务和数据集。适合高精度和定制应用场景,涵盖场景解析、人类解析、人脸解析等任务。特点包括多种主干网络和分割模型,支持PyTorch、ONNX、TFLite等框架的推理和导出。即将迎来重大更新,包括新的训练流程、预训练模型、教程和分布式训练支持。用户可通过详细文档和示例轻松使用并配置定制数据集,实现高效的语义分割。
VisualGLM-6B - 一个具备处理图像、中文和英文的能力的开源多模态对话语言模型
GithubVisualGLM-6B图像描述多模态对话模型开源开源项目微调
VisualGLM-6B是一个开源多模态对话语言模型,具备处理图像、中文和英文的能力。该模型继承自强大的ChatGLM-6B基础,增添了6.2亿参数,整合了先进的BLIP2-Qformer技术,达到了语言和视觉数据的高效融合。模型总参数量为7.8亿,展现在多个核心多模态任务上的卓越效能。针对各种应用场景均进行了优化,支持在消费级显卡上运行,降低了使用门槛,拓展了其在学术研究和实务应用中的潜力。
llava-1.5-7b-hf - 基于Llama 2的多模态AI模型 实现图像理解与对话
GithubHuggingfaceLLaVATransformers图像文本生成多模态开源项目模型模型优化
LLaVA-1.5-7B是一个基于Llama 2架构的开源多模态视觉语言模型。通过指令微调,该模型实现了图像理解和对话能力,支持多图像输入和多轮对话。LLaVA-1.5-7B可应用于图像问答、视觉推理等任务,并提供便捷的pipeline接口。模型支持4比特量化和Flash Attention 2优化,可在普通GPU上高效运行。这为研究人员和开发者提供了一个功能强大的视觉语言AI工具。
vilt-b32-finetuned-vqa - ViLT:基于Transformer的无卷积视觉语言问答模型
GithubHuggingfaceViLTVision-and-Language Transformer图像处理开源项目模型自然语言处理视觉问答
vilt-b32-finetuned-vqa是一个在VQAv2数据集上微调的视觉问答模型,基于ViLT架构。该模型无需卷积或区域监督,可高效处理图像和文本的多模态任务。通过PyTorch,开发者能轻松实现视觉问答功能,只需输入图像和问题即可。这一模型为视觉语言理解领域的研究和应用提供了有力支持。
t5-base-tag-generation - T5模型微调实现自动文章标签生成
GithubHuggingfacet5-base开源项目文本分类机器学习标签生成模型自然语言处理
t5-base-tag-generation是基于T5模型微调的文本生成工具,专门用于从文章内容自动生成标签。该模型利用190k Medium文章数据集训练,采用1000个标签的分类体系进行数据清洗和标签增强。它将多标签分类转化为文本生成任务,可为各类文本高效生成相关标签,提升内容分类和检索效率。模型在50000篇文章上训练一个epoch,展现出良好的标签生成能力。
DeepSeek-VL - 高性能开源视觉语言模型 多模态理解与复杂场景应用
DeepSeek-VLGithub人工智能多模态理解开源开源项目视觉语言模型
DeepSeek-VL是一个开源视觉语言模型,为实际应用场景而设计。它能处理逻辑图表、网页、公式、科学文献、自然图像等,并在复杂场景中展现智能。模型提供1.3B和7B两种参数规模,支持基础和对话应用,可用于学术研究和商业用途。DeepSeek-VL采用MIT许可证,为研究人员和开发者提供了强大的视觉语言处理工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号