Project Icon

Mistral-Nemo-Instruct-2407-GGUF

多语言与编程语言支持的先进文本生成模型

Mistral Nemo由Mistral AI和NVIDIA联合训练,拥有超过一百万的上下文窗口,支持多种语言如法语、德语、中文及逾80种编程语言,包括Python和Java。模型性能卓越,通过GGUF量化适合复杂任务场景。它可在LM Studio使用,并能处理特定格式的指令,广泛适用于文本生成任务。

Qwen2.5-3B-Instruct-GGUF - 高性能3B参数量GGUF格式大语言模型,支持多语言、长文本理解与结构化输出
GGUF格式GithubHuggingfaceQwen2.5人工智能大语言模型开源项目模型自然语言处理
Qwen2.5-3B-Instruct-GGUF是一款基于Qwen2.5系列的指令微调模型,参数量为3B。该模型支持29种语言,具备出色的代码和数学处理能力。它可处理128K tokens的上下文,生成长度达8K tokens的文本。模型采用transformers架构,整合了RoPE和SwiGLU等技术,并提供多种量化版本。其优势在于强大的指令跟随能力、结构化数据理解和JSON输出能力,适用于多样化的系统提示词场景。
gemma-2-9b-it-GGUF - Gemma 2 Instruct模型,支持多语言与复杂文本生成
GemmaGithubGoogleHuggingface开源项目文本生成模型编程语言语言模型
Google推出的Gemma 2 Instruct是全新文本生成模型,旨在高效处理多语言和编程任务。训练基于8万亿令牌,数据量较前代提升30%,覆盖网络文档、代码和数学等数据集,支持复杂文本生成与逻辑推理。模型参数仅9亿,对硬件要求较低,适合内存有限的用户,同时具备多语言和代码生成能力。
Mistral-7B-Instruct-v0.1-GPTQ - Mistral-7B-Instruct量化模型 多种精度选项
AI模型GPTQ量化GithubHuggingfaceMistral大语言模型开源项目指令微调模型
Mistral-7B-Instruct-v0.1模型的GPTQ量化版本提供4位和8位精度等多种参数选项。量化后的模型体积显著减小,性能基本不变,适合消费级GPU推理。支持通过ExLlama或Transformers加载,可用于高效文本生成。用户可根据硬件和需求选择合适版本。
Mistral-7B-OpenOrca-GPTQ - Mistral语言模型的GPTQ量化优化实现
GPTQ量化GithubHuggingfaceMistral-7B开源项目模型模型部署深度学习自然语言处理
本项目对Mistral-7B-OpenOrca模型进行GPTQ量化处理,提供4位和8位精度、多种分组大小的量化版本。通过优化存储和计算方式,在保持模型性能的同时大幅降低显存占用。项目支持text-generation-webui、Python等多种调用方式,并提供完整的使用文档。
Mistral-7B-Instruct-v0.1 - 多种推理方式支持的指令调优大语言模型
GithubHuggingfaceMistral-7B-Instruct-v0.1大语言模型开源项目指令微调机器学习模型自然语言处理
Mistral-7B-Instruct-v0.1是基于Mistral-7B-v0.1的指令调优大语言模型。该模型通过多种公开对话数据集微调,支持mistral_common、mistral_inference和transformers等多种推理方式。它采用分组查询注意力和滑动窗口注意力机制,结合字节回退BPE分词器,提供简单的指令格式,适用于对话生成任务。模型架构优化使其在保持高性能的同时,具备良好的通用性和易用性。
Mistral-7B-Instruct-v0.3-GGUF - Mistral-7B-Instruct模型的多种量化版本优化性能与文件大小
GGUFGithubHuggingfaceMistral-7B-Instruct-v0.3llama.cpp开源项目模型模型性能量化
该项目为Mistral-7B-Instruct-v0.3模型提供多种量化版本,采用llama.cpp的imatrix选项。量化类型从Q8_0到IQ1_S不等,文件大小范围为1.61GB至7.70GB。项目详细介绍了各版本特点,并提供下载指南和选择建议,方便用户根据硬件条件和性能需求选择最佳版本。
Mistral 7B - Mistral 7B及衍生模型全面指南
AI工具Mistral 7B人工智能大语言模型开源模型自然语言处理
本站聚焦Mistral 7B开源语言模型,提供模型介绍、部署指南和在线体验。汇集微调版本导航、使用教程和研究动态,是Mistral 7B相关资源的综合参考平台。
MIstral-QUantized-70b_Miqu-1-70b-iMat.GGUF - 优质法语对话能力的70B模型,适用于大容量VRAM
GithubHuggingfaceMiqu 1 70bMistral AI上下文大小开源项目模型法语量化
Miqu 1 70b是Mistral Medium Alpha的一个模型,由Mistral AI公司开发,适合法语使用者。该模型在法语对话中表现出色,智能性能与精调的Llama 2 70b相当,并倾向于避免过拟合。Miqu提供多种量化格式,Q4_K_S和Q3_K_M在48GB和36GB VRAM上支持完全卸载,满足大容量VRAM用户需求。虽然Miqu与CodeLlama 70b有相同的100万theta值,但在实验中证明其最大上下文能力为32k,相较于4k更具优势,并提供较低的周转率。
NemoMix-Unleashed-12B-GGUF - NemoMix-Unleashed-12B模型的多种量化版本
GGUFGithubHuggingfaceNemoMix-Unleashed-12B开源项目机器学习模型语言模型量化
NemoMix-Unleashed-12B-GGUF项目提供了多种NemoMix-Unleashed-12B模型的量化版本。这些版本采用llama.cpp进行处理,精度范围从F16到IQ2_M,文件大小在4.44GB至24.50GB之间。项目详细介绍了各量化类型、文件大小及使用建议,便于用户根据硬件选择合适版本。同时提供下载指南和性能比较资料,方便模型部署和评估。
mathstral-7B-v0.1-GGUF - Mistral 7B衍生的量化数学推理模型
GGUF格式GithubHuggingfacemistralai人工智能开源项目数学模型文本生成模型
mathstral-7B-v0.1-GGUF是基于Mistral 7B开发的数学和科学任务专用模型。项目提供GGUF格式的2-8位量化版本,兼容多种推理框架。在MATH、GSM8K等数学推理基准测试中表现优异,体现了其卓越的数学推理能力。该模型支持多种开源工具,如llama.cpp、text-generation-webui等,方便用户在不同环境中部署和使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号