Project Icon

wav2vec2-xlsr-persian-speech-emotion-recognition

Wav2Vec 2.0波斯语语音情感识别模型

该项目开发的Wav2Vec 2.0波斯语语音情感识别模型能够识别六种基本情绪。模型在ShEMO数据集上训练,总体准确率达90%。项目提供了完整的使用说明,包括环境配置、模型加载和预测示例代码。同时还展示了模型在各情绪类别上的性能指标,如精确率、召回率和F1分数等。

wav2vec2-large-xlsr-53-th - 基于Common Voice数据集微调的泰语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2开源项目模型泰语自然语言处理语音识别
该项目提供了一个基于wav2vec2-large-xlsr-53架构的泰语语音识别模型。模型使用Common Voice 7.0数据集进行微调,在测试集上实现了13.63%的词错率和2.81%的字符错率。项目详细介绍了数据预处理、模型训练和评估流程,并与主流商业API进行了性能对比。此模型可用于开发泰语语音转文本应用,为泰语自然语言处理研究提供了有价值的资源。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
wav2vec2-large-xlsr-53-finnish - 基于XLSR-53的芬兰语自动语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型芬兰语语音识别
该模型是在wav2vec2-large-xlsr-53基础上微调的芬兰语语音识别系统。它利用Common Voice和CSS10数据集训练,支持16kHz采样率输入。无需额外语言模型,可直接用于芬兰语语音转文本。在Common Voice测试集上,词错率41.6%,字符错率8.23%。项目提供了使用指南和评估方法,适合芬兰语语音识别应用。
wav2vec2-btb-cv-ft-btb-cy - 基于微调的语音识别模型,提升准确度与适用性
GithubHuggingfacewav2vec2开源项目损失率模型模型优化自动语音识别训练参数
此AI模型基于DewiBrynJones的wav2vec2-xlsr-53-ft-btb-cv-cy微调而成,专注提升自动语音识别精确度。评估词错误率为0.3402,表现出明显改善。使用Adam优化器,学习率为0.0003,训练批次为4。适用于高精度需求的语音识别场景,但因缺乏训练数据和用途的细节说明,适用性需谨慎评估。
conv-emotion - 会话情感识别技术及最新数据集与模型更新
COSMICDialogueGCNGithubRECCONTL-ERCemotion recognition开源项目
本页面介绍了会话情感识别技术,包括用于识别会话情感的多种基于PyTorch和TensorFlow的模型,如COSMIC、TL-ERC和DialogueGCN。还提供了最新的多模态多方对话数据集和相关基准数据集,并介绍了识别会话情感原因和对话生成的技术。这些技术通过建模对方状态和跨人际依赖关系来实现情感识别。最新更新包括M2H2数据集和相关基线模型,并链接至其他重要项目和研究。
albert-base-v2-emotion - ALBERT架构情感分析模型:Twitter数据集微调与性能评估
AlbertGithubHuggingface开源项目情感分析文本分类机器学习模型自然语言处理
albert-base-v2-emotion是一个基于ALBERT架构的情感分析模型,在Twitter情感数据集上进行了微调。该模型在准确率和F1分数方面分别达到93.6%和93.65,展现了优秀的性能。模型训练采用HuggingFace Trainer,使用2e-5学习率、64批量大小和8轮训练。与同类模型相比,albert-base-v2-emotion在性能和处理速度间取得了平衡。开发者可以通过简洁的Python代码集成此模型,轻松实现文本情感分类功能。
wav2vec2-xlsr-1b-finnish-lm-v2 - 芬兰语语音识别模型精调,提升语音转文字效果
GithubHuggingfacewav2vec2-xlsr-1b开源项目模型芬兰语训练数据语言模型语音识别
wav2vec2-xlsr-1b-finnish-lm-v2模型基于Facebook AI的多语言预训练模型,为芬兰语自动语音识别进行了优化,使用275.6小时的录音数据进行精调。模型在Common Voice 7.0和FLEURS ASR数据集的测试中取得了4.09%的词错误率(WER)和12.11%的WER。模型配有芬兰语KenLM语言模型用于解码,适合短语音片段处理。其在正式语境中的表现较佳,但普及日常口语和方言的能力有限。可通过训练自定义KenLM以适应特定领域语言。
dl-for-emo-tts - 通过深度学习实现情感语音合成
GithubTacotron优化器开源项目情感语音合成数据集深度学习
项目通过深度学习实现情感语音合成,包括Tacotron和DCTTS模型的应用。详细介绍了使用的数据集、相关文献和多种模型微调策略,如调整学习率和冻结网络层。尽管面临情感数据集有限的问题,但实验验证了改进方案对低资源情感TTS传递学习的有效性。
filipino-wav2vec2-l-xls-r-300m-official - 基于XLS-R的菲律宾语语音识别模型
GithubHuggingfacewav2vec2开源项目机器学习模型模型训练语音数据集语音识别
这是一个针对菲律宾语的语音识别模型,通过在filipino_voice数据集上微调wav2vec2-xls-r-300m实现。经过30轮训练后,模型在测试集上达到了0.2922的词错误率,可用于菲律宾语音频识别任务。
wav2vec2-large-960h-lv60-self - Wav2Vec2大规模语音识别模型实现低词错误率
GithubHuggingfaceLibriSpeechWav2Vec2开源项目模型模型评估自训练语音识别
Wav2Vec2-large-960h-lv60-self是一个基于Wav2Vec2技术的大规模语音识别模型。该模型在960小时的Libri-Light和Librispeech数据集上进行预训练和微调,采用自训练方法。在LibriSpeech清晰测试集上,模型实现1.9%的词错误率,其他测试集上为3.9%。模型可直接用于音频转录,特别适合标记数据有限的语音识别任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号