Project Icon

Av1an

并行视频编码框架,提升编码速度和CPU利用率

Av1an是一款开源的视频编码框架,通过并行处理提高编码速度和CPU利用率。它支持目标质量模式、VMAF分析等功能,兼容多种主流编码器。Av1an可扩展性强,支持VapourSynth脚本,具备暂停恢复功能,并提供简洁的命令行界面。这个跨平台Rust应用为视频编码提供了高效解决方案。

Av1an

av1an fully utilizing a 96-core CPU for video encoding

Discord server CI tests

Buy Me A Coffee

Av1an is a video encoding framework. It can increase your encoding speed and improve cpu utilization by running multiple encoder processes in parallel. Target quality, VMAF plotting, and more, available to take advantage for video encoding.

For help with av1an, please reach out to us on Discord or file a GitHub issue.

Av1an Book

Features

  • Hyper-scalable video encoding
  • Target Quality mode, using VMAF control encoders rate control to achieve the desired video quality
  • VapourSynth script support
  • Cancel and resume encoding without loss of progress
  • Minimal and clean CLI
  • Docker images available
  • Cross-platform application written in Rust

Usage

For complete reference, refer to CLI or run av1an --help

Encode a video file with the default parameters:

av1an -i input.mkv

Or use a VapourSynth script and custom parameters:

av1an -i input.vpy -v "--cpu-used=3 --end-usage=q --cq-level=30 --threads=8" -w 10 --target-quality 95 -a "-c:a libopus -ac 2 -b:a 192k" -l my_log -o output.mkv

Supported encoders

At least one encoder is required to use Av1an. The following encoders are supported:

Note that Av1an requires the executable encoder. If you use a package manager to install encoders, check that the installation includes an executable encoder (e.g. vpxenc, SvtAv1EncApp) from the list above. Just installing the library (e.g. libvpx, libSvtAv1Enc) is not enough.

Installation

av1an can be installed from package managers, cargo.io, or compliled manually. There are also pre-built Docker images which include all dependencies and are frequently updated.

For Windows users, prebuilt binaries are also included in every release, and a nightly build of the current master branch is also available.

Package managers

Arch Linux & Manjaro: pacman -S av1an Cargo: cargo install av1an

Manual installation

Prerequisites:

Optional:

  • L-SMASH VapourSynth plugin for better chunking (recommended)
  • DGDecNV Vapoursynth plugin for very fast and accurate chunking, dgindexnv executable needs to be present in system path and an NVIDIA GPU with CUVID
  • ffms2 VapourSynth plugin for better chunking
  • bestsource Vapoursynth plugin for slow but accurate chunking
  • mkvmerge to use mkvmerge instead of FFmpeg for file concatenation
  • VMAF to calculate VMAF scores and to use target quality mode

VapourSynth plugins on Windows

If you want to install the L-SMASH or ffms2 plugins and are on Windows, then you have two installation options. The easiest way is using the included plugin script:

  1. Open your VapourSynth installation directory
  2. Open a command prompt or PowerShell window via Shift + Right click
  3. Run python3 vsrepo.py install lsmas ffms2
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号