Project Icon

swin-base-patch4-window12-384

高效图像分类的Swin Transformer视觉模型

Swin Transformer是一款视觉Transformer,通过使用层级特征图和移窗技术,进行高效图像分类。模型在ImageNet-1k数据集上以384x384分辨率训练,具备线性计算复杂度,使其适用于图像分类和密集识别任务。模型可用于原始图像分类,或者在模型集中寻找细化版本,适合处理计算密集型任务。

项目介绍:swin-base-patch4-window12-384

概述

swin-base-patch4-window12-384项目是一个基于Swin Transformer的图像分类模型。它使用了ImageNet-1k数据集进行训练,图像分辨率为384x384。Swin Transformer由Liu及其团队在论文“Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”中首次提出,并在微软的GitHub仓库中发布。

模型介绍

Swin Transformer是一种视觉Transformer模型,以层次化的方式构建特征图。通过在更深的层次中合并图像块,它仅在每个局部窗口内计算自注意力,使计算复杂度线性化。相比之下,以前的视觉Transformer在全局范围内计算自注意力,复杂度随输入图像大小呈二次增长。因此,Swin Transformer可作为图像分类和密集识别任务的通用骨干。

模型架构

预期用途与局限性

Swin Transformer可以用于基本的图像分类任务。用户可以通过模型中心查找针对特定任务微调的模型版本。

使用方法

以下是如何使用此模型对COCO 2017数据集中的图像进行分类为1,000种ImageNet类别之一的示例代码:

from transformers import AutoFeatureExtractor, SwinForImageClassification
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/swin-base-patch4-window12-384")
model = SwinForImageClassification.from_pretrained("microsoft/swin-base-patch4-window12-384")

inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])

更多代码示例可以参考文档

引用信息

如果在学术研究中使用了此模型,可以按照以下BibTeX条目进行引用:

@article{DBLP:journals/corr/abs-2103-14030,
  author    = {Ze Liu and
               Yutong Lin and
               Yue Cao and
               Han Hu and
               Yixuan Wei and
               Zheng Zhang and
               Stephen Lin and
               Baining Guo},
  title     = {Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  journal   = {CoRR},
  volume    = {abs/2103.14030},
  year      = {2021},
  url       = {https://arxiv.org/abs/2103.14030},
  eprinttype = {arXiv},
  eprint    = {2103.14030},
  timestamp = {Thu, 08 Apr 2021 07:53:26 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2103-14030.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

结论

Swin Transformer通过创新的技术改变了视觉Transformer的计算复杂度,使其更适合广泛的视觉任务。它不仅是图像分类的有力工具,还能通过扩展优化其他视觉识别任务。用户可以根据需要参考提供的代码和文献进行进一步的研究和应用开发。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号