Project Icon

Ministral-8B-Instruct-2410

多功能高效语言模型,兼具多语言和代码处理能力

Ministral-8B-Instruct-2410是一款高效的语言模型,具有128k上下文窗口、函数调用支持和多语言代码训练等特点,显著提升同类模型性能。该模型适用于本地智能设备和边缘计算,经过针对性优化以提升多语言和代码处理能力。根据Mistral Research License,该模型适用于非商业研究。Ministral-8B在知识、常识、代码、数学及多语言基准测试中表现优异,为广泛应用提供了强大的支持。

multilingual-e5-large-instruct - 支持100+语言的多语言大规模指令型自然语言处理模型
GithubHuggingfaceMTEB分类多语言开源项目检索模型模型评估
multilingual-e5-large-instruct是一个多语言大规模指令型语言模型,支持100多种语言的文本处理。该模型在MTEB基准测试的分类、检索、聚类等任务中表现优秀,展现了优异的跨语言能力。它可应用于多语言文本嵌入、语义搜索、文本分类等场景,为自然语言处理提供了实用的多语言解决方案。
Mistral-NeMo-Minitron-8B-Base - 高效压缩的大规模语言模型适用于多种自然语言生成任务
GithubHuggingfaceMistral-NeMo人工智能大语言模型开源项目模型模型压缩自然语言处理
Mistral-NeMo-Minitron-8B-Base是一个经过剪枝和蒸馏的基础文本生成模型。它采用4096维嵌入、32个注意力头、11520维MLP中间层和40层结构,结合分组查询注意力和旋转位置编码技术。该模型在MMLU等基准测试中表现优异,适用于多种自然语言生成任务。支持8k字符输入,可通过Transformers库轻松使用。
SmolLM-135M-Instruct - 轻量级指令语言模型的高效实现
GithubHuggingfaceSmolLM人工智能开源项目机器学习模型模型训练语言模型
SmolLM-135M-Instruct是一个1.35亿参数的轻量级指令语言模型。经过高质量教育数据训练和公开数据集微调后,模型具备基础知识问答、创意写作和Python编程能力。支持MLC、GGUF等多种本地部署方案,可通过Transformers框架调用。v0.2版本进一步优化了对话质量和任务完成能力。
Mistral-7B-Instruct-v0.1-GPTQ - Mistral-7B-Instruct量化模型 多种精度选项
AI模型GPTQ量化GithubHuggingfaceMistral大语言模型开源项目指令微调模型
Mistral-7B-Instruct-v0.1模型的GPTQ量化版本提供4位和8位精度等多种参数选项。量化后的模型体积显著减小,性能基本不变,适合消费级GPU推理。支持通过ExLlama或Transformers加载,可用于高效文本生成。用户可根据硬件和需求选择合适版本。
Mistral-Nemo-Base-2407 - Mistral和NVIDIA联合开发的多语言大模型支持128k超长上下文
GithubHuggingfaceMistral-Nemo-Base-2407多语言支持大语言模型开源项目机器学习模型深度学习
Mistral-Nemo-Base-2407是Mistral AI与NVIDIA合作推出的开源语言模型,采用12B参数规模和128k上下文窗口设计。模型支持英语、法语等8种语言,并在MMLU等多项基准测试中表现出色。基于40层transformer架构,可作为Mistral 7B的升级替代方案。该项目以Apache 2许可证发布,支持多语言及代码生成场景。
nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf - Mistral-NeMo-Minitron-8B-Base模型实现高效自然语言生成
GithubHuggingfaceMistral-NeMo-Minitron-8B-BaseNVIDIA开源项目模型自然语言生成语料库量化
NVIDIA 的 Mistral-NeMo-Minitron-8B-Base 模型运用压缩和蒸馏技术,为自然语言生成任务提供解决方案。该模型通过修剪和蒸馏 Mistral-NeMo 12B,在 3800 亿个词标中完成训练,适用于多领域文本转换,并支持 NeMo 24.05 引擎,兼容 NVIDIA 多种硬件架构。
Meta-Llama-3-8B-Instruct - Meta开发的大规模语言模型 支持多种自然语言处理任务
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型自然语言处理
Meta-Llama-3-8B-Instruct是Meta公司开发的大型语言模型之一,参数规模为8B。该模型经过指令微调,优化了对话性能,在多项行业基准测试中表现优异。模型采用改进的Transformer架构,具有8k上下文窗口,适用于英语的商业和研究场景。它可用于开发聊天助手、生成文本等多种自然语言处理应用,在开发过程中重点关注了实用性和安全性。
Qwen2.5-14B-Instruct - 多语言支持的高性能指令微调模型
GithubHuggingfaceQwen2.5人工智能多语言支持大语言模型开源项目模型自然语言处理
Qwen2.5-14B-Instruct是Qwen2.5系列中的14B参数指令微调大语言模型,支持29种以上语言。该模型在知识储备、编码和数学能力方面有显著提升,在指令跟随、长文本生成和结构化数据理解等领域表现卓越。它支持128K的上下文长度和8K的生成长度,采用RoPE和SwiGLU等先进架构,提供高效的多语言自然语言处理能力。
EuroLLM-1.7B-Instruct - 支持35种语言的欧洲开源大语言模型
EuroLLMGithubHuggingface多语言模型开源项目机器翻译模型神经网络自然语言处理
EuroLLM-1.7B-Instruct是一个欧盟支持开发的大语言模型,具备17亿参数规模,可处理包括欧盟在内的35种语言。模型在机器翻译性能方面超越同规模的Gemma-2B模型,接近更大规模的Gemma-7B水平。采用transformer架构和分组查询机制,实现高效推理。这是欧盟首个面向多语言处理的开源语言模型项目。
Mixtral-8x7B-Instruct-v0.1-GPTQ - Mixtral-8x7B多语言推理模型的GPTQ量化版本
GPTQGithubHuggingfaceMixtral 8X7B大语言模型开源项目推理模型量化
本项目提供Mistral AI的Mixtral-8x7B-Instruct-v0.1模型的GPTQ量化版本,支持法语、意大利语、德语、西班牙语和英语多语言推理。模型采用Mixtral架构,提示模板为'[INST] {prompt} [/INST]'。项目提供多种量化参数选项,可适应不同硬件和需求,在保证性能的同时降低资源消耗。该模型使用Apache 2.0许可发布。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号