Project Icon

multi-qa-mpnet-base-dot-v1

基于自监督对比学习的句子语义搜索模型

该模型用于提升语义搜索能力,将句子和段落映射至768维向量空间,达成高效信息检索。训练依托逾2.15亿问答对,覆盖丰富数据集与平台。模型应用CLS池化与点积相似度评估,适合处理有限文本语义匹配,同时支持sentence-transformers与HuggingFace Transformers两种使用方式,满足不同开发者需求。

distiluse-base-multilingual-cased-v2 - 多语言句子向量模型 适用于60多种语言的语义分析
GithubHuggingfacesentence-transformers句子相似度向量空间多语言模型开源项目模型语义搜索
distiluse-base-multilingual-cased-v2是一款多语言句子转换模型,能将文本转化为512维向量。支持60多种语言,可用于文本聚类和语义搜索。通过sentence-transformers库即可快速部署使用。该模型在句子嵌入基准测试中表现优异,为多语言自然语言处理提供了有力支持。
stsb-distilbert-base - 语义搜索与聚类任务的句子嵌入模型
GithubHuggingfacesentence-transformers句子嵌入开源项目机器学习模型模型自然语言处理语义搜索
此模型将句子和段落转换为768维的稠密向量,适用于语义搜索和聚类任务。然而,由于其性能已不再是最优,建议选择更优质的句子嵌入模型。如需使用,可通过安装sentence-transformers库轻松实现,或使用HuggingFace Transformers进行更高级的处理,如加入注意力掩码的平均池化。尽管模型效能下降,其架构仍有参考价值。
distiluse-base-multilingual-cased-v1 - 多语言句子嵌入模型实现跨语言语义相似度分析
GithubHuggingfacesentence-transformers句子嵌入多语言开源项目模型特征提取语义相似度
distiluse-base-multilingual-cased-v1是一个基于sentence-transformers框架的多语言句子嵌入模型。它能将句子和段落映射到512维密集向量空间,支持15种语言的语义处理。模型采用DistilBERT架构,通过平均池化和全连接层生成嵌入,适用于聚类、语义搜索等任务。借助sentence-transformers库,开发者可便捷地实现句子编码和跨语言相似度计算。
all-MiniLM-L12-v2 - 基于自监督学习的高效句子嵌入模型
GithubHuggingfacesentence-transformers句子嵌入句子相似性对比学习开源项目微调模型
采用自监督对比学习技术,all-MiniLM-L12-v2模型专注于高效编码句子和短段落,利用超过11亿句对进行训练,加强语义搜索和信息检索性能。结合TPU与JAX/Flax技术优化,模型方便集成在sentence-transformers或HuggingFace Transformers中,适合多种文本处理应用。
bge-base-en-v1.5 - 高效英文文本嵌入模型 支持语义搜索与相似度计算
GithubHuggingfaceONNX权重Transformers.js嵌入计算开源项目文本检索模型特征提取
bge-base-en-v1.5是一个基于Transformers.js的英文文本嵌入模型,专门用于语义搜索和文本相似度计算。该模型提供高效的特征提取功能,支持多句嵌入和余弦相似度计算。它易于集成到各种自然语言处理任务中,如信息检索、文档分类和语义匹配。开发者可通过简洁的JavaScript代码实现文本嵌入和相似度计算。
gte-large-zh - 中文语义相似度与检索的卓越表现模型
GithubHuggingfaceMTEBgte-large-zhsentence-transformers开源项目模型自然语言处理语义相似度
gte-large-zh模型在MTEB中文基准测试中表现突出,涵盖句子相似度、文本分类、聚类、重排序和检索等多个任务。该模型在CMNLI和JDReview等数据集上的准确率超过80%,为中文自然语言处理应用提供了稳定的语义理解基础。
m3e-base - 中英双语文本嵌入模型,支持多种自然语言处理任务
GithubHuggingfaceM3Esentence-transformers开源项目微调文本嵌入文本相似度模型
M3E是一个开源的文本嵌入模型,在2200万+中文句对数据集上训练。该模型支持中英双语的文本相似度计算和检索,适用于文本分类、检索等多种自然语言处理任务。M3E在MTEB-zh基准测试中表现优异,多项指标超越了OpenAI的同类模型。它易于使用和微调,完全兼容sentence-transformers生态系统。
ms-marco-MiniLM-L-12-v2 - 跨编码器模型实现高效信息检索与段落排序
Cross-EncoderGithubHuggingfaceMS MarcoSentenceTransformers信息检索开源项目模型自然语言处理
ms-marco-MiniLM-L-12-v2是为MS Marco段落排序任务开发的跨编码器模型。该模型在信息检索领域表现优异,能够高效编码和排序查询与段落。在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上,模型分别达到74.31的NDCG@10和39.02的MRR@10。每秒处理960个文档的速度使其在准确性和效率间实现了良好平衡,适用于各类信息检索应用场景。
sentence-transformers-e5-large-v2 - 句子向量化模型实现文本相似度检索和聚类
GithubHuggingfaceembaas APIsentence-transformers句子嵌入开源项目模型自然语言处理语义搜索
sentence-transformers-e5-large-v2模型是intfloat/e5-large-v2的改进版本,能将文本映射至1024维向量空间。该模型在聚类和语义搜索方面表现出色,支持通过sentence-transformers库或embaas API快速集成。模型在MTEB评测中获得优异成绩,为文本嵌入和相似度计算提供了有力支持。
xlm-r-bert-base-nli-stsb-mean-tokens - XLM-RoBERTa句子嵌入模型支持多语言语义相似度和文本聚类
GithubHuggingfacesentence-transformers句子嵌入开源项目模型特征提取自然语言处理语义相似度
这是一个基于XLM-RoBERTa的句子嵌入模型,将句子和段落映射到768维密集向量空间。支持多语言,适用于语义搜索和文本聚类等任务。可通过sentence-transformers或Hugging Face Transformers库轻松使用。需注意,该模型已被弃用,建议使用更新的句子嵌入模型以获得更好性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号