Project Icon

Llama-3.1-Nemotron-lorablated-70B-i1-GGUF

Llama-3.1的矩阵量化技术优化模型性能

该项目提供了一系列用于Llama-3.1-Nemotron模型的加权和矩阵量化文件,旨在优化模型的性能和运行效率。这些文件在缩小模型尺寸的同时保持了质量,适用于多种场景。用户可依据需求选择适合的量化级别,具体使用说明请参阅指南。项目的成功得益于各方支持和资源,推动了更多高质量量化文件的开发,助力广泛的研究和应用。

TinyLlama-1.1B-Chat-v0.3-AWQ - 高效量化方法助力多用户场景下的快速推理
GithubHuggingfaceTinyLlama低比特量化多用户服务器开源项目推理效率模型
该项目采用AWQ低位量化方法,提高了多用户服务器场景下的Transformers推理速度和效率。相比GPTQ,AWQ在减少部署成本的同时,能够使用更小的GPU进行推理。TinyLlama模型支持4-bit量化,并兼容vLLM与Huggingface TGI插件,高效应对高并发需求。在Zhang Peiyuan的开发下,该模型适合计算和内存资源有限的开源项目部署。
quantized-models - 提供多源量化模型以提升大语言模型推理效率
GithubHuggingfacequantized-modelstransformers大型语言模型开源项目文本生成推理模型量化模型
quantized-models项目整合了多种来源的量化模型,旨在提高大语言模型的推理效率。模型支持者包括TheBloke、LoneStriker、Meta Llama等,提供gguf、exl2格式的支持。用户可通过transformers库便捷地进行文本生成,这些模型按现状发布,需遵循其各自的许可协议。
Phind-CodeLlama-34B-v2-GGUF - 利用GGUF格式提升模型性能,兼容多平台GPU加速
CodeLlamaGPU加速GithubHuggingface开源项目文本生成格式转换模型模型量化
Phind's CodeLlama 34B v2采用GGUF格式,由llama.cpp团队在2023年8月21日推出替代GGML。GGUF实现了更优的标记化及特殊标记支持,并且具有可扩展性。兼容多种第三方界面与库(如text-generation-webui和KoboldCpp),并支持GPU加速。量化模型在保持高质量的同时降低了资源占用,适用多种场景,建议使用Q4_K_M与Q5_K_M模型以实现最佳性能及质量平衡。
Llama-2-70B-Chat-AWQ - 基于AWQ的4位量化法优化多用户环境推理效率
AI助手GithubHuggingfaceLlama 2Meta开源项目性能优化模型量化
AWQ是一种高效的四位量化方法,能够提升Transformer的推理速度。结合vLLM,该方案在多用户服务器中实现高吞吐量的并发推理。AWQ的优势包括支持使用较小的GPU进行运行,简化部署要求并降低整体成本。例如,一个70B模型可在一台48GB的GPU上运行,而无需使用两台80GB设备。尽管目前整体吞吐量仍低于未量化模型,AWQ提供了更灵活的硬件选择。
Llama-3.1-8B - Meta推出的多语言大型语言模型 支持128K超长上下文
GithubHuggingfaceLlama 3.1Meta人工智能多语言大语言模型开源项目模型
Llama-3.1-8B是Meta公司推出的多语言大型语言模型,采用优化的Transformer架构,支持128K超长上下文。该模型在8种语言中进行预训练和指令微调,在通用对话和多语言任务上表现优异。Llama-3.1-8B适用于助手式聊天、自然语言生成等商业和研究场景,并提供自定义商业许可证。用户在遵守使用政策的前提下可广泛应用该模型。
llama - 开源大语言模型推动自然语言处理发展
GithubLlamaMeta人工智能大语言模型开源开源项目
Llama 2是Meta公司开发的开源大语言模型系列,提供7B至70B参数的预训练和微调模型。该项目为研究和商业用途提供模型权重和代码,支持多样化的自然语言处理应用。Llama 2注重负责任的AI发展,实施严格的使用政策。项目包含多个仓库,构建了从基础模型到端到端系统的完整技术栈,为AI领域的创新和应用提供了重要支持。
Mistral-Nemo-Instruct-2407-GGUF - 高效模型量化与优化指南
GithubHuggingfaceLlamaEdgeMistral-Nemo-Instruct-2407开源项目模型模型量化语言支持高搜索量
该项目介绍了多语言支持的Mistral-Nemo-Instruct-2407模型,其量化版本是由Second State Inc.完成的,涵盖从2位到16位的不同精度和质量损失模型。特别推荐使用具有最小质量损失的Q5_K_M和Q5_K_S版本。此外,还提供了在LlamaEdge上运行的服务和命令行应用指南,以便在配置上下文大小和自定义提示模板时满足不同应用的需求。本项目适合于在资源有限的环境中追求性能优化的用户。
Ministral-3b-instruct-GGUF - 更高效的量化语言模型,为文本生成带来显著性能提升
Apache 2.0GithubHuggingfaceNLPtransformers开源项目模型模型量化语言模型
Ministral-3b-instruct-GGUF是一个基于llama.cpp的高效量化模型,专为Ministral系列的3B参数设计优化,并从Mistral-7B进行微调。它使用混合数据集,主要用于英语文本生成。通过量化技术,该模型在保持精度的同时,显著减少了存储和计算需求,理想应用于高效文本生成场景。项目遵循Apache 2.0许可协议,以确保合规使用。
Meta-Llama-3-8B-Instruct - Meta推出Llama 3系列大型语言模型
GithubHuggingfaceLlama 3人工智能元模型大型语言模型开源项目模型自然语言生成
Llama 3是Meta开发的新一代大型语言模型系列,提供8B和70B两种参数规模。该模型针对对话场景进行优化,在行业基准测试中表现出色。Llama 3采用优化的Transformer架构,支持8k上下文长度,适用于助手式聊天和多种自然语言生成任务。模型开发过程注重提升实用性和安全性,可用于商业及研究目的。
Llama-2-13b-hf - Meta开源的130亿参数语言模型 适用于多种NLP任务
GithubHuggingfaceLlama 2人工智能元宇宙大语言模型开源项目模型自然语言处理
Llama-2-13b-hf是Meta开发的大规模语言模型,拥有130亿参数。该模型在2万亿tokens的公开数据上预训练,采用优化的Transformer架构。它支持对话、问答、文本生成等多种NLP任务。与Llama 1相比,Llama 2在代码、常识推理、世界知识等基准测试中表现更佳。此模型开源可用于商业和研究,为AI应用开发奠定了基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号