Project Icon

MadMix-Unleashed-12B-i1-GGUF

MadMix-Unleashed-12B模型量化文件的使用与性能分析

项目MadMix-Unleashed-12B提供多种量化文件,适用于不同应用需求。量化文件如i1-IQ1_S和i1-IQ1_M等,可以根据性能和质量要求进行选择。文档中详细阐述了GGUF文件的使用方法,并提供了使用说明和质量比较。感谢nethype GmbH和@nicoboss的技术支持,他们的贡献提升了量化模型的质量。

Meta-Llama-3-70B-Instruct-abliterated-v3.5-IMat-GGUF - 提升量化效率及IMatrix集成以增强文本生成性能
GithubHuggingfaceIMatrixMeta-Llama-3-70B-Instruct-abliterated-v3.5开源项目文本生成模型量化
本项目应用Llama.cpp的量化技术结合IMatrix数据集,对Meta-Llama-3-70B-Instruct-abliterated-v3.5模型进行优化。支持BF16到Q2_K等多种量化格式,用户可根据需求选择下载不同版本,适用于多种文本生成场景。IMatrix集成提升了低比特位的性能表现,适合现代高效计算需求。提供全面的下载指南和FAQ,帮助用户有效地理解和使用文件,实现文本生成任务的高效推理。
CodeLlama-34B-GGUF - 340亿参数的代码生成与理解模型
CodeLlamaGGUFGithubHuggingfacellama.cpp代码生成开源项目模型量化
CodeLlama-34B-GGUF是Meta的CodeLlama 34B模型的GGUF量化版本,专门用于代码生成和理解。模型参数量340亿,支持多种量化等级,可在CPU和GPU上推理。TheBloke提供多个GGUF文件,兼容llama.cpp等推理框架。用户可根据设备选择合适版本,轻松部署这个强大的代码AI助手。适用于代码补全、bug修复等多种开发任务,提高编程效率。
Qwen2.5-Math-72B-Instruct-GGUF - Llamacpp在Qwen2.5-Math代码量化中的应用
ARM芯片GithubHugging FaceHuggingfaceQwen2.5-Math-72B-Instruct开源项目性能模型量化
项目应用llama.cpp对Qwen2.5-Math模型进行量化,提供多种量化格式以适应不同硬件配置。更新包括改进的分词器,涵盖高至极低质量的量化文件,适用于不同RAM和VRAM需求,并支持在ARM芯片上运行。使用K-quant和I-quant等量化方法,有助于优化模型性能与速度。下载和安装可通过huggingface-cli实现,灵活快捷。
Nemotron-Mini-4B-Instruct-GGUF - 量化模型应用指南与选择推荐
项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。
merlinite-7b-lab-GGUF - Merlinite 7b的4-bit量化版本,适用于优化性能和灵活性
Apache LicenseGithubHuggingfaceIBMmerlinitemistral开源项目模型量化
Merlinite 7b的4-bit量化版本由IBM Research开发,针对优化模型性能和灵活性而设计,结合了前沿技术,为数据处理提供更高效的表现,同时确保结果的准确性。
Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - Llama-3.1-8B-Lexi开源量化模型概览
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2开源项目权重模型模型文件量化高质量
项目介绍了Llama-3.1-8B-Lexi不同量化模型版本,涵盖从高性能到轻量化版本。基于llama.cpp的imatrix量化选项,模型支持在LM Studio中运行。项目提供从完整F32权重到轻量化IQ2_M版本的多种选择,适合不同内存及质量需求的用户,并提供详细的下载和性能指引,帮助在系统RAM与GPU VRAM间找到平衡。
Meta-Llama-3-8B-Instruct-GGUF - Llama 3系列8B参数指令微调模型 支持多级量化
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型自然语言处理
Meta-Llama-3-8B-Instruct-GGUF是Llama 3系列的8B参数指令微调模型。项目提供2-bit至16-bit多种量化级别的GGUF格式,适应不同部署场景。模型在对话和指令遵循方面表现优异,可用于开发AI助手。项目包含详细使用说明和多项NLP任务的基准测试结果,展示了模型的卓越性能。
Ministral-3b-instruct-GGUF - 更高效的量化语言模型,为文本生成带来显著性能提升
Apache 2.0GithubHuggingfaceNLPtransformers开源项目模型模型量化语言模型
Ministral-3b-instruct-GGUF是一个基于llama.cpp的高效量化模型,专为Ministral系列的3B参数设计优化,并从Mistral-7B进行微调。它使用混合数据集,主要用于英语文本生成。通过量化技术,该模型在保持精度的同时,显著减少了存储和计算需求,理想应用于高效文本生成场景。项目遵循Apache 2.0许可协议,以确保合规使用。
quantized-models - 提供多源量化模型以提升大语言模型推理效率
GithubHuggingfacequantized-modelstransformers大型语言模型开源项目文本生成推理模型量化模型
quantized-models项目整合了多种来源的量化模型,旨在提高大语言模型的推理效率。模型支持者包括TheBloke、LoneStriker、Meta Llama等,提供gguf、exl2格式的支持。用户可通过transformers库便捷地进行文本生成,这些模型按现状发布,需遵循其各自的许可协议。
Mistral-Small-22B-ArliAI-RPMax-v1.1-GGUF - AI模型量化方法提升硬件性能与资源效率
GithubHuggingfaceMistral-Small-22B-ArliAI-RPMax-v1.1基于ARM的优化开源项目性能模型模型下载量化
通过llama.cpp进行量化优化,AI模型适用于各种RAM配置和资源受限环境。多种量化选项可供选择,从高质量到低资源占用,确保最佳性能表现。适用于ARM以及其他特定硬件,通过选择I-quant和K-quant格式实现速度与质量的平衡,优化AI推理性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号