Project Icon

OpenCrystal-15B-L3-v2-i1-GGUF

提供多种量化文件支持AI模型性能提升

OpenCrystal-15B-L3-v2-i1-GGUF项目提供多种GGUF量化文件,旨在优化AI模型的性能。不同的量化类型和大小让用户可以按照需求选择合适的设置,以提升模型运行速度或在资源有限的情况下提高输出质量。感谢nethype GmbH公司和@nicoboss对项目的技术支持。

CodeLlama-7B-GGUF - 采用GGUF格式的CodeLlama 7B模型提高编码效率与多平台兼容性
CodeLlamaGithubHuggingfaceLLMMeta代码生成开源项目模型模型量化
该项目展示了Meta的CodeLlama 7B模型在GGUF格式中的优势,取代不再支持的GGML格式。GGUF提供了更好的标记和特别符号支持,并具有元数据和扩展性。适用于多种第三方客户端和库,如llama.cpp和text-generation-webui。量化模型可满足不同计算需求,实现CPU+GPU推理的最佳性能,适配多种平台,为高性能编码需求提供多样化解决方案。
Mistral-Nemo-Instruct-2407-GGUF - Mistral Nemo多语言指令模型的量化版本
GGUFGithubHuggingfaceMistral-Nemo-Instruct-2407大语言模型开源项目机器学习模型量化模型
Mistral-Nemo-Instruct-2407模型的GGUF量化实现,包含从Q2到Q8多个量化等级,文件大小范围为4.9GB至13.1GB。模型原生支持英语、法语、德语等8种语言,基于Apache 2.0协议开源。项目提供了各量化版本的性能对比数据及使用文档,便于在性能和资源消耗间做出合适选择。
CodeLlama-13B-GGUF - GGUF格式的创新特点与适用范围
CodeLlama 13BGithubHuggingfaceMeta开源项目机器学习模型模型格式量化
Meta推出的GGUF格式替代了GGML,优化了编码生成的效能和兼容性。它增强了标记处理和元数据支持,并适用于多种程序和库,如llama.cpp和text-generation-webui。这种格式推动了编码模型的发展,提供了便于GPU加速和降低内存需求的量化模型,提升了开发者的灵活性和解决方案质量。
Gemma-2-9B-It-SPPO-Iter3-GGUF - 探讨Gemma-2-9B模型量化版本的性能与存储选择
Gemma-2-9B-It-SPPO-Iter3GithubHuggingface下载指南开源项目数据集模型量化高性能
该项目利用llama.cpp进行量化,推出多种Gemma-2-9B-It-SPPO-Iter3模型版本以适应不同的内存及性能需求。用户可按RAM和VRAM状况选择合适的量化格式,如高质量的Q6_K_L或经济型IQ2_M。量化文件大小介于4GB至37GB之间,且可通过Huggingface下载。根据VRAM选择合适模型尺寸,有助于优化运行速度,并提供多样化选项以满足不同性能与存储需求。
hqq - 无需校准数据即可快速精确量化大模型的工具
8,4,3,2,1 bitsCUDAGithubHQQtorch.compile开源项目模型量化
HQQ是一种无需校准数据即可快速精确量化大模型的工具,支持从8bit到1bit的多种量化模式。兼容LLMs和视觉模型,并与多种优化的CUDA和Triton内核兼容,同时支持PEFT训练和Pytorch编译,提升推理和训练速度。详细基准测试和使用指南请访问官方博客。
gguf-tools - 处理和解析GGUF文件的实用工具库
APIGGUFGithub开源项目机器学习模型比较量化
该工具库正在开发中,专注于处理和解析GGUF文件。它提供详细的键值对和张量信息展示、文件比较和张量细节检查等功能。gguf-tools旨在为机器学习领域提供多种实现方案,帮助理解和使用GGUF格式,提升模型操作和分析的效率。该工具展示了如何在实际应用中使用库,并将来计划加入更多有趣且实用的示例和功能。
OmniQuant - 简便高效的大型语言模型量化技术
GithubLLaMAOmniQuant大语言模型开源项目量化高效QAT
OmniQuant是一种高效的量化技术,支持多种大型语言模型(LLM)的权重和激活量化,包括LLaMa和OPT等。其实现了4位及更低精度的权重量化,并通过MLC-LLM优化在多种硬件设备上的推理性能和内存占用。此外,项目还支持Mixtral和Falcon模型的压缩应用,大幅降低内存需求,提高运行效率。
rwkv.cpp - 多精度量化推理和CPU优化的大语言模型
GithubPythonRWKVcuBLASggmlhipBLAS开源项目
该项目将RWKV-LM移植到ggerganov的ggml,支持FP32、FP16及量化的INT4、INT5和INT8推理,主要针对CPU使用,同时兼容cuBLAS。项目提供C库和Python封装。RWKV是一种不同于Transformer的大语言模型架构,只需前一步状态计算logits,适合长上下文使用。支持RWKV v5和v6模型以及LoRA检查点加载,适用于高质量和高性能需求的场景。
ppq - 多功能的神经网络量化工具
GithubOnnxPPQTensorRT开源项目神经网络量化量化优化
PPQ 是一个适用于工业应用的神经网络量化工具。通过将浮点运算转换为定点运算,它显著提升系统功耗效率和执行速度。具备高度扩展性,用户可自定义量化过程,并结合多种硬件和推理库使用。版本 0.6.6 更新了图模式匹配、图融合功能,并新增 FP8 量化规范和 PFL 基础类库。支持 TensorRT, Openvino, Onnxruntime 等推理框架,实现高效的神经网络量化部署。
KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号