Project Icon

bert-tiny-finetuned-sms-spam-detection

BERT-Tiny模型实现高精度SMS垃圾信息检测

该项目基于BERT-Tiny模型,针对SMS垃圾信息检测任务进行了微调。模型在验证集上实现了98%的准确率,展现了优秀的性能。作为一个轻量级解决方案,它特别适用于资源受限的环境,如移动设备上的实时垃圾短信过滤。

t5-base-finetuned-sst2 - 优化GLUE SST-2数据集准确率的高效文本分类模型
GLUE SST-2GithubHuggingfaceT5准确率开源项目模型模型细节训练过程
T5-base-finetuned-sst2是一个在GLUE SST-2数据集上微调的文本分类模型,准确率达到93.23%。该模型基于编码-解码结构,通过多任务的无监督和有监督学习预训练,将任务转化为文本到文本的格式。在训练中,使用了特定的标记化策略和超参数设置,促进模型快速收敛。适合高效处理文本分类任务的应用场景,提供了对现有分类工具的优化方案。
language-detection-fine-tuned-on-xlm-roberta-base - 精度提升的语言检测模型,基于xlm-roberta-base优化
GithubHuggingfacelanguage-detection-fine-tuned-on-xlm-roberta-basexlm-roberta-base准确率开源项目模型模型微调语言检测
该项目展示了一个基于xlm-roberta-base模型优化的语言检测应用,使用common_language数据集实现了0.9738的高准确率。模型使用Adam优化器和线性学习率调度加快训练过程,混合精度训练提升效率。适用于多语言环境中需要高精度语言分类的场景。
stsb-bert-tiny-openvino - 基于BERT的轻量级句子相似度和语义搜索模型
GithubHuggingfacesentence-transformers向量编码开源项目模型深度学习自然语言处理语义搜索
stsb-bert-tiny-openvino是一个轻量级的自然语言处理模型,基于sentence-transformers框架开发。模型将文本映射为128维向量,可用于文本相似度分析、聚类和语义检索。支持sentence-transformers和HuggingFace两种调用方式,配备完整的使用示例和文档。通过CosineSimilarityLoss训练优化,在保持高效处理能力的同时确保了模型的轻量化。
distilbert-base-uncased-ag-news - 使用精简版模型增强新闻文本分类性能
GithubHuggingfaceTextAttackdistilbert-base-uncased交叉熵损失函数准确率序列分类开源项目模型
该项目通过使用TextAttack工具和ag_news数据集对distilbert-base-uncased模型进行微调,提升了文本分类的精确度。模型经过5个周期的训练,采用了32的批量大小、2e-05的学习率和128的最大序列长度。在分类任务中采用了交叉熵损失函数。模型在验证集测试中取得了0.9479的最佳准确度。详见TextAttack的GitHub页面。
distilbert-base-uncased-finetuned-sst-2-english - 英语文本情感分析的高精度模型
DistilBERTGithubHuggingface偏见开源项目文本分类模型精度
模型由Hugging Face团队微调,适用于SST-2情感分析任务,精度达到91.3%。针对英语文本特性设计,适合单标签分类。适用Python和Transformers库,易于集成。模型可实现高效特征提取,但可能在特定背景下产生偏差,应在应用前充分测试。开放源代码,Apache-2.0许可支持二次开发。
german-sentiment-bert - 基于BERT架构的德语情感分析模型
BERTGithubHuggingfacePython开源项目德语情感分类机器学习模型自然语言处理
该项目开发了一个基于BERT架构的德语情感分类模型。模型在184万个德语样本上训练,数据来源包括社交媒体和各类评论。提供Python包便于使用,支持情感预测和概率输出。在多个数据集上表现优异,最高F1分数达0.9967。可应用于对话系统等德语情感分析场景。
deberta-v3-large-zeroshot-v1 - 强大高效的零样本文本分类能力
DeBERTa-v3GithubHuggingface开源项目文本分类模型模型训练自然语言推理零样本分类
模型适用于零样本分类,通过将文本分类任务转换为'真假'判定任务达到自然语言推理效果。使用Hugging Face pipeline实现,较现有模型表现优异。基于27项任务和310类文本进行训练,专注'Entailment'与'Not_Entailment'的二分类,且在多种文本分类场景中表现灵活。模型为开源,受到MIT许可证保护。
distilbert-imdb - IMDB电影评论情感分析模型实现92.8%准确率
DistilBERTGithubHuggingfaceIMDB数据集准确率开源项目文本分类模型模型微调
该文本分类模型通过在IMDB数据集上对distilbert-base-uncased进行微调而来,主要用于电影评论情感分析。模型基于Transformers 4.15.0和PyTorch 1.10.0开发,使用Adam优化器和线性学习率调度器,经过单轮训练在评估集上达到92.8%的准确率。
tweets-gender-classifier-distilbert - 基于DistilBERT的推文作者性别分类模型
BERTGithubHuggingface开源项目性别分类机器学习模型自然语言处理谷歌
这是一个基于DistilBERT模型的推文性别分类方案,通过分析推文内容预测作者性别。项目以google-bert/bert-base-uncased为基础模型,使用准确率和F1分数作为评估指标。该开源项目遵循apache-2.0许可证,可应用于社交媒体用户分析、市场研究、受众画像等场景。
bert-finetuned-ner - BERT微调模型实现高精度命名实体识别
BERTGithubHuggingfaceconll2003命名实体识别开源项目模型模型微调自然语言处理
该项目基于BERT模型,在conll2003数据集上进行微调,专注于命名实体识别任务。模型在评估集上展现出优异性能,精确率达0.9355,召回率为0.9514,F1分数为0.9433。经过3轮训练,采用Adam优化器和线性学习率调度器,模型在命名实体识别领域表现卓越。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号