Project Icon

t5-base-finetuned-question-generation-ap

T5微调模型用于高效问题生成

T5-base模型在SQuAD数据集上进行微调,通过整合答案和上下文实现问题生成。项目依托Hugging Face的Transformers库,在Google的支持下,利用迁移学习提升自然语言处理的精确度。支持大规模无标签数据集加载及优化训练脚本,以改善问答生成性能。

项目介绍:t5-base-finetuned-question-generation-ap

项目概述

t5-base-finetuned-question-generation-ap 是一个基于 Google 的 T5 模型,并经过 SQuAD 数据集微调的项目,旨在生成问题。该项目通过在上下文语境前添加“答案”,从而在自然语言处理中生成问题。这一技术能够帮助开发者更高效地自动构建问答系统。

T5 模型介绍

T5 模型,是由 Colin Raffel 等人提出的一种统一的文本转换框架。该方法是一种迁移学习的技术,即模型先在数据丰富的任务上预训练,然后再在下游任务上进行微调。迁移学习在自然语言处理领域表现出了极大的潜力。这篇文章探讨了如何把所有的语言问题转化为文本到文本的格式进行处理,目的是在多个语言理解任务上达到最佳效果。通过结合大规模数据集和先进的方法,T5 模型在许多基准测试中都取得了优异成绩。

下游任务:问答数据集

项目使用的是 SQuAD v1.1 数据集,这是一种用于训练问答系统的标准数据集。具体分割情况如下:

  • 训练集:87,599 个样本
  • 验证集:10,570 个样本

开发者可以通过使用 Huggingface 的 NLP 库来加载这些数据集。

模型微调

该项目的训练脚本基于 Suraj Patil 的优秀脚本进行了一些修改。Suraj Patil 对问题生成技术进行了深入的研究,其工作为本项目提供了非常有价值的支持。

模型使用示例

通过 Python 代码,开发者可以直接调用此模型来生成问题:

from transformers import AutoModelWithLMHead, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")

def get_question(answer, context, max_length=64):
  input_text = "answer: %s  context: %s </s>" % (answer, context)
  features = tokenizer([input_text], return_tensors='pt')

  output = model.generate(input_ids=features['input_ids'], 
               attention_mask=features['attention_mask'],
               max_length=max_length)

  return tokenizer.decode(output[0])

context = "Manuel has created RuPERTa-base with the support of HF-Transformers and Google"
answer = "Manuel"

get_question(answer, context)

在上述示例中,给定答案“Manuel”和相应的上下文,模型能够自动生成问题:“Who created the RuPERTa-base?”

引用

如需引用本模型及其相关工作,可以使用以下 BibTeX 条目:

@misc{mromero2021t5-base-finetuned-question-generation-ap,
  title={T5 (base) fine-tuned on SQUAD for QG via AP},
  author={Romero, Manuel},
  publisher={Hugging Face},
  journal={Hugging Face Hub},
  howpublished={\url{https://huggingface.co/mrm8488/t5-base-finetuned-question-generation-ap}},
  year={2021}
}

本项目由 Manuel Romero 创建,并通过 Hugging Face 发布,致力于帮助开发者在自然语言处理领域取得更大成就。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号