Project Icon

MobileVLM-1.7B

移动设备优化的高效多模态视觉语言模型

MobileVLM-1.7B是一种专为移动设备设计的多模态视觉语言模型,通过多种优化技术实现高效推理,支持跨模态交互。该模型在标准基准测试中表现出色,并经过CLIP方式的预训练。在Qualcomm Snapdragon 888和NVIDIA Jeston Orin设备上的处理速度分别为每秒21.5个和65.3个令牌。

VLMEvalKit - 开源的大型视觉语言模型评估工具包
GithubVLMEvalKit多模态数据集大型视觉语言模型开源开源项目评估工具包
VLMEvalKit是一款开源的大型视觉语言模型评估工具包,支持即插即用的评估操作,无需繁重的数据准备。该工具包支持多种顶级数据库和最新模型测试,并为用户提供精确匹配和基于LLM的答案提取两种评估结果。有效工具,帮助专业人员和研究者评估模型性能。
Multimodal-GPT - 整合视觉与语言功能的多模态对话机器人
GithubOpenFlamingo多模态GPT开源项目联合训练视觉指令语言模型
Multimodal-GPT是一个基于OpenFlamingo多模态模型的项目,通过结合视觉指令和语言指令数据的联合训练,有效提升模型性能。该项目支持VQA、图像描述、视觉推理、文本OCR和视觉对话等多种数据类型,并利用LoRA进行参数高效的微调。探索Multimodal-GPT的广泛应用可能性。
VTimeLLM - 创新视频大语言模型实现精准时刻理解
GithubVTimeLLM多阶段训练大语言模型开源项目时间边界感知视频理解
VTimeLLM是一种先进的视频大语言模型,专注于精细化视频时刻理解和推理。该模型采用边界感知三阶段训练策略,包括图像-文本特征对齐、多事件视频时间边界识别和高质量视频指令微调。这种方法显著提升了模型的时间理解能力,使其在多项视频理解任务中表现优异。
VideoLLaMA2 - 增强视频理解的多模态语言模型
AIGithubVideoLLaMA2多模态大语言模型开源项目视频理解
VideoLLaMA2是一款先进的视频语言模型,通过增强空间-时间建模和音频理解能力,提高了视频问答和描述任务的性能。该模型在零样本视频问答等多项基准测试中表现出色。VideoLLaMA2能处理长视频序列并理解复杂视听内容,为视频理解技术带来新进展。
llm-awq - 激活感知权重量化技术实现大语言模型高效压缩与加速
AWQGithubLLM开源项目模型量化视觉语言模型边缘设备
AWQ是一种高效的大语言模型低比特权重量化技术,支持INT3/4量化,适用于指令微调和多模态模型。它提供预计算模型库、内存高效的4位线性层和快速推理CUDA内核。AWQ使TinyChat可在边缘设备上实现大模型高效本地推理。该技术已被Google、Amazon等采用,并获MLSys 2024最佳论文奖。
AQLM - 加性量化技术实现大型语言模型高效压缩
AQLMGithubPyTorch大语言模型开源项目推理量化
AQLM项目开发了一种名为加性量化的新技术,可将大型语言模型压缩至原规模的1/16左右,同时基本保持原始性能。该技术适用于LLaMA、Mistral和Mixtral等多种模型架构,并提供了预量化模型。项目包含PyTorch实现代码、使用教程和推理优化方案,为大规模语言模型的实际应用提供了新思路。
nm-vllm - 基于vLLM的企业级大语言模型推理引擎
DockerGithubPyPInm-vllmvLLM开源项目模型优化
nm-vllm是Neural Magic维护的企业级大语言模型推理引擎,基于vLLM开发。支持PyPI安装和Docker部署,提供CUDA加速和稀疏化功能,可提高推理效率。项目在Hugging Face上提供多种优化模型,为大规模语言模型部署提供高效解决方案。
OLMo - 开源语言模型加速科学研究
GithubOLMo人工智能开源语言模型开源项目机器学习自然语言处理
OLMo是一个开源语言模型项目,提供多种规模的先进模型,如1B、7B和7B Twin 2T,全部基于Dolma数据集训练。该项目支持模型训练、微调和推理,提供详细配置和检查点以确保研究可重现。OLMo还包含数据检查和评估工具,为语言模型研究提供全面支持,旨在加速这一领域的科学进展。
Visual-Chinese-LLaMA-Alpaca - 多模态中文模型VisualCLA开发与优化技术
CLIP-ViTChinese-Alpaca-PlusGithubLLaMAVisual-Chinese-LLaMA-Alpaca多模态模型开源项目
VisualCLA基于中文LLaMA/Alpaca模型,增加图像编码模块,实现图文联合理解和对话能力。目前发布测试版,提供推理代码和部署脚本,并展示多模态指令理解效果。未来将通过预训练和精调优化,扩展应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号