Project Icon

efficient-splade-VI-BT-large-query

SPLADE模型优化文档检索速度和精确度

efficient-splade-VI-BT-large-query是一款高效的文档检索SPLADE模型。该模型采用查询和文档推理分离架构,在MS MARCO数据集上实现38.0 MRR@10和97.8 R@1000的性能,查询推理延迟仅0.7毫秒。通过L1正则化和FLOPS正则化等技术,模型在保持接近先进单阶段神经排序器性能的同时,将延迟控制在与BM25相近水平,实现了效率与性能的平衡。

msmarco-MiniLM-L6-cos-v5 - 针对语义搜索的384维句子嵌入模型
BERTGithubHuggingfacesentence-transformers句子相似度开源项目模型自然语言处理语义搜索
这是一个基于sentence-transformers的语义搜索模型,将文本映射至384维向量空间。该模型利用MS MARCO数据集的50万对查询-回答样本训练,可通过sentence-transformers或HuggingFace库轻松调用。它适用于多种语义搜索和文本相似度计算场景,能有效捕捉并表示文本的语义信息。
cloudy-large-zh - 支持多任务评估的高级句子相似性和特征提取模型
GithubHuggingfacesentence-transformers句子相似性开源项目排序重排数据集检索模型
cloudy-large-zh项目专注于句子相似性和特征提取,利用MTEB数据集进行广泛的任务评估。在中医问答、电子商务和视频检索等领域表现优异,特别是在MTEB CMedQAv2重新排序任务中获得89.47的MRR分数。采用先进算法提高检索性能,确保各领域内容的准确排序和高效检索。
deepseek-moe-16b-base - 采用稀疏混合专家架构的开源大语言模型
DeepSeek MoEGithubHuggingface人工智能代码生成开源项目机器学习模型模型训练
DeepSeek MoE 16B Base是一个基于稀疏混合专家(MoE)架构的开源大语言模型,支持商业应用。模型使用bfloat16格式,可通过Transformers库调用,擅长文本生成和补全。它采用查询-键值对映射的注意力机制,高效处理自然语言处理任务。该项目遵循MIT许可,提供详细文档和示例代码,便于开发者集成使用。
DeepSeek-VL - 高性能开源视觉语言模型 多模态理解与复杂场景应用
DeepSeek-VLGithub人工智能多模态理解开源开源项目视觉语言模型
DeepSeek-VL是一个开源视觉语言模型,为实际应用场景而设计。它能处理逻辑图表、网页、公式、科学文献、自然图像等,并在复杂场景中展现智能。模型提供1.3B和7B两种参数规模,支持基础和对话应用,可用于学术研究和商业用途。DeepSeek-VL采用MIT许可证,为研究人员和开发者提供了强大的视觉语言处理工具。
multi-qa-MiniLM-L6-dot-v1 - 多语言句子相似度模型,支持语义搜索
GithubHuggingfacemulti-qa-MiniLM-L6-dot-v1句子嵌入句子相似度开源项目模型自监督对比学习语义搜索
multi-qa-MiniLM-L6-dot-v1是一个专为语义搜索设计的句子嵌入模型,将文本转化为384维的密集向量。此模型训练于215M个问题和答案对,可处理多种数据来源。用户可通过sentence-transformers轻松加载模型进行查询和文档编码,从而计算点积相似度分数,实现相关性排序。除了基础功能外,该模型同样支持HuggingFace Transformers的复杂上下文嵌入处理,能有效提升语义搜索效率,适用于不超过512词片的文本。
ms-marco-TinyBERT-L-2 - 针对MS Marco段落排序优化的TinyBERT-L-2跨编码器
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目机器学习模型自然语言处理
ms-marco-TinyBERT-L-2是一个为MS Marco段落排序任务优化的跨编码器模型。在TREC Deep Learning 2019和MS Marco段落重排任务中,它的NDCG@10和MRR@10分别达到69.84和32.56。模型每秒可处理9000个文档,为信息检索提供高效准确的解决方案。研究人员可通过Transformers或SentenceTransformers库使用该模型进行查询-段落对的相关性评分。
speculative-decoding - 推测解码技术,优化大型语言模型推理速度
GithubSpeculative Decoding大语言模型开源项目性能优化推理加速自然语言处理
该开源项目聚焦于推测解码技术的研究与实现,旨在提升大型语言模型的文本生成效率。项目涵盖了多种推测解码策略,包括提前退出、推测采样和先知变压器。同时,项目致力于优化批处理推测解码,以增强整体性能。研究计划还包括对比不同策略的效果,并探索微观优化方法。这些工作为加快AI模型推理速度提供了新的技术思路。
mxbai-rerank-xsmall-v1 - 轻量级多语言搜索重排序模型
GithubHuggingfacetransformers人工智能开源项目机器学习模型模型重排自然语言处理
mxbai-rerank-xsmall-v1是一个轻量级多语言搜索重排序模型(reranker)。该模型基于transformers.js实现,可在浏览器中运行,支持多种语言。它在保持小巧的同时,能有效提升搜索结果相关性。这个开源项目适用于需要快速、精准重排序的应用场景,为开发者提供了灵活的定制和集成选项。
mxbai-rerank-base-v1 - 跨语言重排序模型提升搜索结果相关性
GithubHuggingfacetransformers人工智能开源项目机器学习模型深度学习自然语言处理
mxbai-rerank-base-v1是一个基于transformers库开发的跨语言重排序模型。该模型支持多语言处理,可在transformers.js中使用,有助于提升搜索结果的相关性。模型采用Apache-2.0开源协议发布,适用于搜索引擎、推荐系统和问答系统等场景,能够优化排序结果。
ms-marco-MiniLM-L-2-v2 - 基于MS Marco训练的跨编码器模型实现高效文本排序
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
这是一个基于MS Marco Passage Ranking任务训练的跨编码器模型。主要用于信息检索领域,通过对查询和候选段落编码实现文本排序。模型在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上展现出优秀性能,NDCG@10和MRR@10指标表现突出。支持Transformers和SentenceTransformers两种调用方式,适用于多种应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号