Project Icon

quora-roberta-base

基于RoBERTa的Quora问题重复识别跨编码器

该跨编码器模型基于RoBERTa-base架构,专为识别Quora平台上的重复问题而设计。通过SentenceTransformers框架训练,模型能为问题对预测0-1范围内的相似度分数。虽然在Quora重复问题数据集上表现出色,但仅适用于检测语义相近的问题,不适合评估一般性相似度。模型集成简便,几行代码即可在项目中实现。

unbiased-toxic-roberta - RoBERTa模型识别多语言有毒评论并减少偏见
DetoxifyGithubHuggingface开源项目有毒评论分类机器学习模型模型评估自然语言处理
该项目开发了基于RoBERTa的多语言模型,用于检测互联网上的有毒评论。模型在Jigsaw三个挑战数据集上训练,可识别威胁、侮辱和仇恨言论等多种有毒内容。它支持多种语言,易于使用,适用于研究和内容审核。项目还探讨了模型的局限性和伦理问题,努力减少对特定群体的意外偏见。
sentence-t5-base - 基于T5架构的句子编码模型用于文本相似度分析
GithubHuggingfacesentence-t5-basesentence-transformers向量嵌入开源项目模型自然语言处理语义相似度
sentence-t5-base是一个基于T5架构的句子编码模型,能将文本映射到768维向量空间。该模型在句子相似度任务中表现优异,但语义搜索效果一般。它由TensorFlow版本转换而来,可通过sentence-transformers库轻松使用。模型仅包含T5-base的编码器部分,权重采用FP16格式存储。使用时需要sentence-transformers 2.2.0及以上版本。这个模型适用于多种自然语言处理应用场景,尤其是文本相似度分析。
cross-encoder-russian-msmarco - 高效的俄文跨编码器模型用于信息检索
DeepPavlov/rubert-base-casedDiTy/cross-encoder-russian-msmarcoGithubHuggingface信息检索句子嵌入开源项目文本分类模型
此开源模型基于DeepPavlov/rubert-base-cased,并经过MS-MARCO数据集优化,专用于俄语信息检索,支持高效的查询和段落相关性排序。通过安装sentence-transformers可直接使用,也可通过HuggingFace Transformers扩展文本分类功能,适合需处理俄语复杂文本的用户。
twitter-roberta-large-hate-latest - 增强的多类别仇恨言论检测模型
GithubHuggingfaceRoBERTaSuperTweetEval仇恨言论检测开源项目推特文本分类模型
此RoBERTa-large模型基于154M推文数据进行训练,并在SuperTweetEval数据集上进行微调,以实现仇恨言论的多类别分类检测。模型能够准确识别多种仇恨类型,包括性别、种族和宗教等,为社交媒体内容管理提供支持。
primeqa - PrimeQA:多语言问答系统的开源研究和开发平台
GithubPrimeQA信息检索多语言问答开源项目机器阅读理解问题生成
PrimeQA是一个开源平台,帮助研究人员和开发人员训练先进的问答模型。用户可以在PrimeQA上复制NLP会议中的实验,下载预训练模型并应用于自定义数据。该平台支持信息检索、多语言阅读理解、问题生成及检索增强的生成技术。PrimeQA在多个排行榜中名列前茅,整合Transformers工具包以提供强大的问答功能,满足领先的研究和开发需求。
paraphrase-multilingual-mpnet-base-v2 - 跨语言句子向量化模型支持聚类和语义检索
GithubHuggingfacesentence-transformers多语言模型开源项目文本嵌入模型自然语言处理语义搜索
paraphrase-multilingual-mpnet-base-v2是一个基于sentence-transformers的多语言句子嵌入模型,支持50多种语言。它将句子和段落映射为768维向量,适用于聚类和语义搜索。模型易于使用,通过pip安装即可快速集成。在Sentence Embeddings Benchmark上表现出色,采用XLMRobertaModel和平均池化层结构,可有效处理不同长度的文本输入。
bge-base-en-v1.5 - 增强文本处理能力的多任务学习模型
GithubHuggingfacesentence-transformers分类句子相似性句子聚类开源项目模型特征提取
bge-base-en-v1.5模型通过多任务学习优化自然语言处理技术,覆盖分类、检索、聚类和重排任务。在多个MTEB数据集上表现优异,例如在亚马逊情感分类任务中达到93.39%的准确率,在AskUbuntu重排任务中MRR达到74.28%。该模型具有MIT开源许可,适用于多种英语任务,为研究人员和开发者提供有效支持。
twitter-roberta-large-2022-154m - 训练于154M推文的RoBERTa-large模型(2022年数据)及其应用
GithubHuggingfaceRoBERTa-large开源项目推特掩码语言模型模型特征提取自然语言处理
本项目提供了一种经过2022年12月底前154M条推文训练的RoBERTa-large模型,主要用于推文数据的理解和解析。它通过Twitter Academic API获取并过滤推文,实现了高级文本预处理、掩码语言模型和特征提取的应用示例。用户可借助标准Transformers接口进行推文分析及嵌入提取,同时适用于对比在不同时间段训练的模型的预测结果和困惑度得分,为研究人员提供更深入分析推特时间序列数据的工具。
SecRoBERTa - 改善网络安全任务的预训练语言模型
GithubHuggingfaceSecRoBERTa事件信息提取威胁情报开源项目模型网络安全预训练模型
SecRoBERTa是一款专为网络安全文本设计的预训练语言模型,提升了命名实体识别和文本分类等任务的性能。该模型通过APTnotes、Stucco-Data和CASIE等数据集进行训练,优化了词汇处理能力,从而更有效地应用于网络安全领域。
e5-base-4k - 提供多任务能力的语义分析模型
ClassificationClusteringGithubHuggingfaceMTEBRetrieval开源项目模型评价指标
e5-base-4k是一款支持多语言分类、检索和聚类的模型。其在MTEB亚马逊极性分类中表现出高准确率和F1得分,并在语义相似性分析方面具有较强性能。模型使用多种数据集,例如AmazonCounterfactualClassification和AmazonReviewsClassification,以优化不同的任务。作为一款获得MIT许可的工具,它以其广泛的应用场景成为文本处理领域的重要组成部分。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号