Project Icon

Meta-Llama-3-70B-Instruct-FP8

FP8量化优化的Meta-Llama-3-70B指令模型实现高效部署

Meta-Llama-3-70B-Instruct-FP8是一个经FP8量化优化的大型语言模型。通过AutoFP8技术,该模型将参数位数从16减至8,大幅降低存储和GPU内存需求。在OpenLLM基准测试中,其平均得分为79.16,与原始模型的79.51相近。这个英语助手式聊天模型适用于商业和研究领域,可通过vLLM后端实现高效部署。

MicroLlama - 预算内的大规模语言模型构建:300M Llama模型的探索
GithubHuggingfaceMicroLlamahuggingface开源开源项目文本生成模型语言模型
该项目在有限预算内,通过全面开源的方法构建了一个300M Llama语言模型。尽管性能不及更大型的模型,但以不到500美元的投入,在多数据集上表现出色,并在与类似参数的BERT模型比较时展现优势。项目使用Vast.ai的计算资源和AWS S3存储,对TinyLlama模型进行了调整,重点优化Slimpajama数据集。这一项目展示了低成本大规模模型开发的潜力,并为细化应用如轻量级聊天机器人提供了坚实基础。
Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - 提升文本生成技术的精度和合规性
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2准确性开源项目未过滤模型量化
基于Llama-3.1-8B-Instruct的项目,旨在提高文本生成的精确性和合规性,并遵循Meta的Llama 3.1社区协议。量化的Lexi模型在多种数据集上评估,IFEval数据集精度达77.92%。用户可自定义系统提示以优化效果,建议在服务部署前添加对齐层以确保合规。使用生成内容时需谨慎负责。
Ministral-3b-instruct-GGUF - 更高效的量化语言模型,为文本生成带来显著性能提升
Apache 2.0GithubHuggingfaceNLPtransformers开源项目模型模型量化语言模型
Ministral-3b-instruct-GGUF是一个基于llama.cpp的高效量化模型,专为Ministral系列的3B参数设计优化,并从Mistral-7B进行微调。它使用混合数据集,主要用于英语文本生成。通过量化技术,该模型在保持精度的同时,显著减少了存储和计算需求,理想应用于高效文本生成场景。项目遵循Apache 2.0许可协议,以确保合规使用。
airllm - 在单个4GB GPU上运行70B大模型,无需量化和蒸馏
AirLLMGithubLlama3.1大语言模型开源项目推理优化模型压缩
AirLLM优化了推理内存使用,使70B大模型能在单个4GB GPU上运行,无需量化、蒸馏或剪枝。同时,8GB显存可运行405B的Llama3.1。支持多种模型压缩方式,推理速度可提升至3倍。兼容多种大模型,提供详细配置和案例,支持在MacOS上运行。
CogVLM2 - 基于Llama3-8B的GPT4V级开源多模态模型
CogVLM2CogVLM2-VideoGithubMeta-Llama-3-8B-Instruct图像理解开源项目视频理解
CogVLM2是基于Meta-Llama-3-8B-Instruct的下一代模型系列,在多项基准测试中表现优异,支持中英文内容和高分辨率图像处理。该系列模型适用于图像理解、多轮对话和视频理解,特别适合需要处理长文本和高分辨率图像的场景。CogVLM2系列还支持8K内容长度,并在TextVQA和DocVQA等任务中显著提升表现。体验更先进的CogVLM2和CogVLM2-Video模型,迎接未来视觉智能挑战。
Llama3-TAIDE-LX-8B-Chat-Alpha1 - 专为繁中对话与任务优化的AI模型
GithubHuggingfaceLlama3-TAIDE台灣文化多輪對話开源项目模型生成式人工智能辦公室常用任務
Llama3-TAIDE-LX-8B-Chat-Alpha1基于Meta的LLaMA3-8b,专为繁体中文交流和任务设计而优化。融合台湾语言和文化,通过精细的指令微调提升多轮问答和办公任务表现。模型提供繁体中文数据训练和4bit量化版本,适合对话和任务辅助,强调可靠性和应用性,增强台湾文化背景知识,为生成式AI领域带来重要推动。
qwen2.5-7b-ins-v3-GGUF - 量化优化AI模型的多样化选择指南
GithubHuggingfaceQwen2.5-7b-ins-v3quantization参数嵌入权重开源项目模型
该项目利用llama.cpp的b3901版本和imatrix选项对AI模型进行量化优化,支持各种硬件的量化格式下载。在LM Studio中运行这些模型,可通过缩小文件大小实现更高效的部署。K-quant格式在低资源环境中表现突出,而I-quants则在某些情况下显示出其新方法的优越性能,尤其建议ARM芯片用户选择Q4_0_X_X以获取更快速的响应。
Llama-Guard-3-1B - 改进AI模型内容安全分类,降低在多平台部署成本
GithubHuggingfaceLlama 3.2Meta内容安全开源项目文本生成模型模型许可
Llama Guard 3-1B是一款专为内容安全分类设计的精调模型,能够识别大规模语言模型输入和输出中的安全性问题。模型优化后符合MLCommons标准,并降低了在移动设备上的部署成本。可通过transformers库或原始llama代码库调用,支持自定义和剔除类别。提供1B及其精简版两种版本,适用于多种操作环境。
Upstage-Llama-2-70B-instruct-v2-AWQ - 先进的低比特量化技术优化文本生成模型
GithubHuggingfaceLlama 2 70B Instruct v2Upstage开源项目文本生成模型量化
Upstage通过AWQ模型实现高效的4比特量化,相较于GPTQ提供更快的推理速度。AWQ支持高吞吐量的多用户服务器环境,可在更小的GPU上运行,从而降低部署成本。此外,模型在多项基准测试中表现卓越,能够在单个48GB GPU上运行70B模型,便于快速部署。了解更多关于该模型的性能和应用场景。
Llama-3-Instruct-8B-SPPO-Iter3 - 改进文本生成的创新模型及其在多任务中的性能评估
Apache-2.0GithubHuggingfaceLlama-3-Instruct-8B-SPPO-Iter3开源LLM排行榜开源项目文本生成模型自我游戏偏好优化
Llama-3-Instruct-8B-SPPO-Iter3模型采用自我对弈偏好优化技术进行第三次迭代微调,具备强大的文本生成能力。模型通过IFEval、BBH、MATH、GPQA、MuSR等多个数据集进行多任务性能评估,其中IFEval (0-Shot)的严格准确率为68.28。该模型基于meta-llama/Meta-Llama-3-8B-Instruct,使用openbmb/UltraFeedback数据集训练,拥有8B参数,专注于英文文本生成,为语言模型的优化提供了全新视角和实用的性能测试结果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号