Project Icon

Meta-Llama-3.1-8B-Instruct-FP8-dynamic

Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成

Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。

Meta-Llama-3.1-8B-Instruct-FP8 - FP8量化优化的多语言AI助手模型
FP8量化GithubHuggingfaceMeta-Llama-3.1vLLM开源项目模型神经魔法自然语言处理
Meta-Llama-3.1-8B-Instruct-FP8是Meta-Llama-3.1-8B-Instruct的FP8量化版本。该模型将参数位数从16位减少到8位,在保持99.52%性能的同时,显著降低了存储和计算资源需求。支持vLLM后端部署,适用于多语言对话任务,可用于商业和研究用途。
Meta-Llama-3.1-70B-Instruct-FP8 - Meta-Llama-3.1-70B模型的FP8量化版本 提升效率降低资源需求
FP8量化GithubHuggingfaceMeta-Llama-3.1-70B-InstructvLLM人工智能开源项目模型语言模型
Meta-Llama-3.1-70B-Instruct模型的FP8量化版本,通过将权重和激活量化为8位浮点数,大幅降低了模型体积和GPU内存需求。支持多语言商业和研究应用,在OpenLLM基准测试中平均得分84.29,性能接近原始模型。可通过vLLM后端高效部署,适用于智能对话等多种场景。
Meta-Llama-3-70B-Instruct-FP8 - FP8量化优化的Meta-Llama-3-70B指令模型实现高效部署
FP8GithubHuggingfaceLlama3vLLM大语言模型开源项目模型量化
Meta-Llama-3-70B-Instruct-FP8是一个经FP8量化优化的大型语言模型。通过AutoFP8技术,该模型将参数位数从16减至8,大幅降低存储和GPU内存需求。在OpenLLM基准测试中,其平均得分为79.16,与原始模型的79.51相近。这个英语助手式聊天模型适用于商业和研究领域,可通过vLLM后端实现高效部署。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic - 多语种量化优化模型,显著降低内存占用
GithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic多语言支持开源项目文本生成模型模型优化量化
通过将权重和激活量化为FP8格式,该项目优化了Llama-3.1-Nemotron模型,显著降低了GPU内存与磁盘的占用。模型适用于商业与研究,支持多语言开发和会话助手的构建。利用vLLM,可以实现高效部署并具有OpenAI兼容性。Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic在诸多测试中表现优良,在Arena-Hard评估中达99.41%的恢复率。
Llama-3.2-11B-Vision-Instruct-FP8-dynamic - Meta-Llama视觉语言模型FP8量化版支持多语言部署
GithubHuggingfaceLlama-3.2vLLM人工智能开源项目模型视觉识别量化压缩
基于Meta-Llama-3.2架构的视觉语言模型,通过FP8动态量化技术实现模型压缩,在保持原有性能的同时将显存需求降低50%。模型支持图文输入和多语言输出,可通过vLLM实现快速部署,提供OpenAI兼容接口,适合商业场景应用。
Meta-Llama-3.1-70B-Instruct-quantized.w8a8 - 经INT8量化优化的Llama-3指令模型实现内存节省和性能提升
AI助手GithubHuggingfaceMeta-Llama-3.1vLLM开源项目模型模型量化语言模型评估
Meta-Llama-3.1-70B-Instruct模型通过INT8量化优化后,GPU内存占用减少50%,计算性能提升两倍。模型保持多语言处理能力,在Arena-Hard、OpenLLM、HumanEval等基准测试中性能恢复率达98%以上。支持vLLM后端部署及OpenAI兼容API。
Meta-Llama-3-8B-Instruct-FP8-KV - 基于FP8量化技术的Meta Llama 3指令模型
GithubHuggingfaceMeta-Llama-3vLLM人工智能开源项目模型模型量化深度学习
Meta-Llama-3-8B-Instruct-FP8-KV是一个采用FP8权重和激活量化的语言模型,通过每张量量化技术和FP8量化的KV缓存实现性能优化。模型与vLLM 0.5.0及以上版本兼容,基于AutoFP8框架和UltraChat数据集完成校准,适用于大规模语言模型的部署场景。
Meta-Llama-3-8B-Instruct-FP8 - FP8量化版Meta Llama 3实现内存占用减半
FP8量化GithubHuggingfaceMeta-Llama-3vLLM大语言模型开源项目模型模型优化
这是一个通过8位浮点(FP8)量化技术优化的Meta Llama 3模型,在仅占用原模型一半存储空间和GPU内存的同时,保持了99.28%的性能水平。模型基于vLLM后端运行,支持英语对话场景下的商业及研究应用,可用于构建AI助手等应用。
Meta-Llama-3.1-8B-Instruct-GGUF - Llama 3.1多语言指令模型的量化版本
GGUFGithubHuggingfaceMeta-Llamallama.cpp人工智能开源项目模型量化
Meta-Llama-3.1-8B-Instruct-GGUF是Llama 3.1模型的量化版本,使用llama.cpp技术实现。该项目提供多种精度的模型文件,从32GB的全精度到4GB的低精度,适应不同硬件需求。模型支持英语、德语、法语等多语言指令任务,可用于对话和问答。用户可选择合适的量化版本,在保持性能的同时优化资源使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号