Project Icon

Meta-Llama-3.1-8B-Instruct-quantized.w4a16

基于LLaMA 3.1的INT4量化指令模型

Meta-Llama-3.1-8B-Instruct模型的INT4量化版本,将模型参数从16bit压缩至4bit,有效降低75%的存储和显存占用。模型在Arena-Hard、OpenLLM、HumanEval等基准测试中表现稳定,量化后性能恢复率保持在93%-99%之间。通过vLLM后端部署,支持8种语言处理,适合商业及研究领域应用。

Llama-3.2-11B-Vision-Instruct-nf4 - 量化视觉语言模型实现高效图像分析与理解
GithubHuggingfaceLlama-3.2图像识别开源项目模型模型部署神经网络量化视觉AI模型
Llama-3.2-11B-Vision-Instruct-nf4是一个基于meta-llama/Llama-3.2-11B-Vision-Instruct的量化视觉语言模型,采用BitsAndBytes的NF4(4位)量化技术,无需双重量化即可实现高效推理。该模型主要用于图像字幕生成等视觉分析任务,并提供详细的使用示例代码。项目还包含配套的ComfyUI自定义节点,为开发者提供了便捷的视觉分析工具集成方案。
Meta-Llama-3.1-8B - 开源支持128K上下文的多语言大规模语言模型
GithubHuggingfaceLlama 3.1人工智能模型多语言支持大语言模型开源项目机器学习模型
Meta Llama 3.1是新一代多语言大规模语言模型系列,提供8B、70B和405B三种参数规模。模型采用优化的Transformer架构,通过SFT和RLHF提升对话能力。支持8种语言,具有128K上下文窗口,基于15T+训练数据。采用GQA技术优化推理性能,适用于商业和研究领域的文本生成任务,知识截至2023年12月。
Llama-3-8B-Instruct-DPO-v0.2-GGUF - Llama-3-8B的GGUF格式量化模型
GGUFGithubHuggingfaceLlama-3大型语言模型开源项目文本生成模型量化
Llama-3-8B-Instruct-DPO-v0.2模型的GGUF格式量化版本,提供2-bit至8-bit多级量化选项。该版本显著减小模型体积和内存需求,同时维持性能。采用ChatML提示模板,兼容多种GGUF格式支持工具,如llama.cpp和LM Studio。此轻量化版本使大型语言模型能在更多设备上本地运行,扩展了应用范围。
Meta-Llama-3.1-8B-Instruct-4bit - Meta的Llama 3.1大语言模型助力多语言文本生成
GithubHuggingfaceLlama 3.1Meta开源项目政策机器学习模型模型许可证
Meta发布的Llama 3.1大语言模型,提供广泛的非独占全球许可,方便在多种语言环境中实现高效文本生成和自然语言处理。该项目允许复制、修改和重新分发模型,支持AI模型的实施与扩展。Llama 3.1提供多种开发工具与文档,提升多语言指令转化的广泛应用和适应性。
Llama-3.2-3B-Instruct-uncensored-GGUF - 3B参数指令微调语言模型的高效GGUF量化版本
GGUFGithubHuggingfaceLlama人工智能开源项目模型量化
Llama-3.2-3B-Instruct-uncensored模型的GGUF量化版本,提供从1.6GB到7.3GB不等的多种量化类型。量化后的模型大小显著减小,便于部署使用,同时尽可能保持原模型性能。项目包含详细的量化版本说明、使用指南和常见问题解答,有助于用户选择适合的版本。
Llama-3-8B-Instruct-v0.9-GGUF - 高效量化Llama-3-8B-Instruct模型支持多种位宽
GGUFGithubHuggingfaceLlama-3人工智能开源项目文本生成模型量化模型
Llama-3-8B-Instruct-v0.9模型的GGUF格式量化版本提供2-bit至8-bit多种位宽选择。GGUF作为llama.cpp团队推出的新格式取代了GGML。该模型兼容多种GGUF支持的客户端和库,如llama.cpp和LM Studio,支持GPU加速,适合本地部署文本生成任务。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
Llama-3.2-3B-Instruct-GGUF - Llama 3.2多语言模型的高效量化部署方案
GithubHuggingfaceLlama 3.2多语言开源项目机器学习模型语言模型量化模型
Llama 3.2系列多语言模型的GGUF量化版本,针对对话、检索和摘要任务进行优化。通过多种量化方案实现4.66GB至9.38GB的灵活内存占用,适合在资源受限环境部署。该模型在主流行业基准测试中展现了良好性能。
Llama-3.1-405B-Instruct-FP8 - Meta开发的多语言大规模语言模型,支持对话和文本生成
GithubHuggingfaceLlama 3.1人工智能元模型多语言大语言模型开源项目模型
Llama-3.1-405B-Instruct-FP8是Meta公司开发的多语言大规模语言模型。该模型支持8种语言的文本输入输出,具有128K的上下文长度,采用优化的Transformer架构。模型在多语言对话和文本生成任务中表现优异,适用于助手式聊天和自然语言处理等领域。Meta为该模型提供了商业许可证,允许在遵守使用政策的前提下应用于商业和研究用途。
Meta-Llama-3-8B-Instruct - Meta开发的大规模语言模型 支持多种自然语言处理任务
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型自然语言处理
Meta-Llama-3-8B-Instruct是Meta公司开发的大型语言模型之一,参数规模为8B。该模型经过指令微调,优化了对话性能,在多项行业基准测试中表现优异。模型采用改进的Transformer架构,具有8k上下文窗口,适用于英语的商业和研究场景。它可用于开发聊天助手、生成文本等多种自然语言处理应用,在开发过程中重点关注了实用性和安全性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号