Project Icon

mMiniLMv2-L12-H384-distilled-from-XLMR-Large

轻量级多语言自然语言处理模型

mMiniLMv2-L12-H384-distilled-from-XLMR-Large是一个基于Microsoft UniLM项目的多语言自然语言处理模型。该模型通过知识蒸馏技术从XLM-R大型模型中提取知识,在维持高性能的同时大幅缩小了模型体积。作为一个轻量级模型,它能够适应文本分类、问答系统和序列标注等多种NLP任务,尤其适合在计算资源有限的环境中使用。

distil-large-v2 - 高效精简的Whisper语音识别模型
Distil-WhisperGithubHuggingfaceTransformers开源项目模型模型压缩自动语音识别语音识别
distil-large-v2是Whisper语音识别模型的蒸馏版本,推理速度提高6倍,模型体积减少49%,性能接近原始模型。采用编码器-解码器架构,通过精简解码器层数实现加速。支持英语短音频和长音频转录,可作为Whisper辅助模型进行推测解码。基于多个开源数据集训练,适用广泛语音识别场景。
bert_uncased_L-12_H-768_A-12 - BERT迷你模型优化低资源环境下的应用
BERTGithubHuggingface开源项目模型知识蒸馏紧凑模型计算资源预训练
BERT Miniatures提供24款小型BERT模型,适合计算资源有限的环境。利用知识蒸馏,这些模型可通过微调获得精确的结果,旨在支持低资源环境的研究并鼓励探索新的创新方向。用户可在官方BERT GitHub页面及HuggingFace平台下载这些模型。它们在GLUE基准测试中表现良好,可通过调整超参数实现最佳效果。详情请参考相关文献。
paraphrase-MiniLM-L12-v2 - sentence-transformers模型用于生成384维句子嵌入向量
GithubHuggingfaceMiniLMsentence-transformers向量嵌入开源项目模型自然语言处理语义相似度
paraphrase-MiniLM-L12-v2是一个sentence-transformers模型,将句子和段落映射到384维向量空间。适用于聚类和语义搜索,支持通过sentence-transformers或Hugging Face Transformers库使用。该模型在Sentence Embeddings Benchmark上表现良好,采用Transformer和Pooling架构处理文本并生成句子嵌入。
xlm-roberta-xl - 基于2.5TB数据训练的100语种自然语言处理模型
GithubHuggingfaceXLM-RoBERTa-XL多语言模型开源项目机器学习模型自然语言处理预训练模型
XLM-RoBERTa-XL是基于2.5TB CommonCrawl数据训练的大规模多语言模型,支持100种语言的自然语言处理。该模型采用掩码语言建模进行自监督学习,适用于序列分类、标记分类和问答等需要理解整句上下文的任务。XLM-RoBERTa-XL为多语言NLP研究和应用提供了强大的基础,但不适合文本生成类任务。
msmarco-MiniLM-L-12-v3 - 高效语句嵌入模型,适用于语义搜索和文本相似度任务
GithubHuggingfacesentence-transformers向量嵌入开源项目模型特征提取自然语言处理语义相似度
msmarco-MiniLM-L-12-v3是一个sentence-transformers模型,将句子和段落映射到384维密集向量空间。该模型基于BERT架构,使用平均池化,适用于聚类和语义搜索。它可通过sentence-transformers或HuggingFace Transformers库使用,高效生成句子嵌入。这个模型在多个基准测试中表现良好,为自然语言处理应用提供语义表示。
bert_uncased_L-2_H-128_A-2 - BERT微型模型:适用于资源受限环境的NLP解决方案
BERTGithubHuggingface开源项目机器学习模型模型压缩知识蒸馏自然语言处理
BERT微型模型是为计算资源受限环境设计的小型自然语言处理模型。它在保留BERT核心功能的同时,显著减小了模型规模。该模型在多项NLP任务中展现出优秀性能,特别适合知识蒸馏场景。它为研究人员和开发者提供了在有限资源条件下进行NLP研究和应用的高效选择。
cross-encoder-mmarco-mMiniLMv2-L12-H384-v1 - 多语言文本重排序模型提升搜索结果准确性
Apache许可证GithubHuggingfacemMiniLMv2开源项目模型模型再排序跨编码器重新上传
mmarco-mMiniLMv2-L12-H384-v1是一个多语言文本重排序模型,基于MiniLM架构设计。它采用12层transformer结构和384维隐藏层,专注于提升文本搜索和排序的准确性。该模型支持多语言输入,适用于搜索结果优化和文档排序等任务,在保持高效性能的同时兼顾了跨语言应用。作为一个开源项目,它为研究人员和开发者提供了强大的文本相关性评分工具。
all_miniLM_L6_v2_with_attentions - 基于MiniLM的句子相似度搜索增强模型
GithubHuggingfaceMiniLMONNXQdrant句子相似度开源项目模型模型嵌入
基于MiniLM-L6-v2架构开发的句子相似度模型,通过整合注意力权重机制增强了文本搜索能力。模型采用ONNX格式发布,可与FastEmbed库无缝集成,支持稀疏嵌入生成,在大规模文本检索场景中表现出色。该模型针对BM42搜索进行了特别优化,能有效提升检索准确度。
multi-qa-MiniLM-L6-dot-v1 - 多语言句子相似度模型,支持语义搜索
GithubHuggingfacemulti-qa-MiniLM-L6-dot-v1句子嵌入句子相似度开源项目模型自监督对比学习语义搜索
multi-qa-MiniLM-L6-dot-v1是一个专为语义搜索设计的句子嵌入模型,将文本转化为384维的密集向量。此模型训练于215M个问题和答案对,可处理多种数据来源。用户可通过sentence-transformers轻松加载模型进行查询和文档编码,从而计算点积相似度分数,实现相关性排序。除了基础功能外,该模型同样支持HuggingFace Transformers的复杂上下文嵌入处理,能有效提升语义搜索效率,适用于不超过512词片的文本。
LiteLlama-460M-1T - 轻量级高性能语言模型精简参数实现大模型能力
GithubHuggingfaceLiteLlama大语言模型开源项目数据集机器学习模型模型训练
LiteLlama是基于LLaMA 2的开源复现项目,将模型参数优化至460M,并使用1T规模tokens训练。采用RedPajama数据集和GPT2分词器,在MMLU等基准测试中表现良好。支持HuggingFace Transformers加载,是一款轻量级但性能优异的语言模型。该项目遵循MIT许可证开源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号