Project Icon

awesome_deep_learning_interpretability

最新深度学习模型解释性研究与资源汇编

本项目收录了最新的159篇深度学习模型解释性相关论文,便于研究人员和工程师深入了解模型内部原理及行为。这些论文按引用次数排序,涵盖多个学科领域,提供了相应代码资源,帮助用户更好地应用解释性技术。页面内容定期更新,保障最新研究成果的收录和呈现。

awesome_deep_learning_interpretability

深度学习近年来关于模型解释性的相关论文。

按引用次数排序可见引用排序

159篇论文pdf(有2篇需要上scihub找)上传到腾讯微云

不定期更新。

YearPublicationPaperCitationcode
2020CVPRExplaining Knowledge Distillation by Quantifying the Knowledge81
2020CVPRHigh-frequency Component Helps Explain the Generalization of Convolutional Neural Networks289
2020CVPRWScore-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks414Pytorch
2020ICLRKnowledge consistency between neural networks and beyond28
2020ICLRInterpretable Complex-Valued Neural Networks for Privacy Protection23
2019AIExplanation in artificial intelligence: Insights from the social sciences3248
2019NMIStop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead3505
2019NeurIPSCan you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift1052-
2019NeurIPSThis looks like that: deep learning for interpretable image recognition665Pytorch
2019NeurIPSA benchmark for interpretability methods in deep neural networks413
2019NeurIPSFull-gradient representation for neural network visualization155
2019NeurIPSOn the (In) fidelity and Sensitivity of Explanations226
2019NeurIPSTowards Automatic Concept-based Explanations342Tensorflow
2019NeurIPSCXPlain: Causal explanations for model interpretation under uncertainty133
2019CVPRInterpreting CNNs via Decision Trees293
2019CVPRFrom Recognition to Cognition: Visual Commonsense Reasoning544Pytorch
2019CVPRAttention branch network: Learning of attention mechanism for visual explanation371
2019CVPRInterpretable and fine-grained visual explanations for convolutional neural networks116
2019CVPRLearning to Explain with Complemental Examples36
2019CVPRRevealing Scenes by Inverting Structure from Motion Reconstructions84Tensorflow
2019CVPRMultimodal Explanations by Predicting Counterfactuality in Videos26
2019CVPRVisualizing the Resilience of Deep Convolutional Network Interpretations2
2019ICCVU-CAM: Visual Explanation using Uncertainty based Class Activation Maps61
2019ICCVTowards Interpretable Face Recognition66
2019ICCVTaking a HINT: Leveraging Explanations to Make Vision and Language Models More Grounded163
2019ICCVUnderstanding Deep Networks via Extremal Perturbations and Smooth Masks276Pytorch
2019ICCVExplaining Neural Networks Semantically and Quantitatively49
2019ICLRHierarchical interpretations for neural network predictions111Pytorch
2019ICLRHow Important Is a Neuron?101
2019ICLRVisual Explanation by Interpretation: Improving Visual Feedback Capabilities of Deep Neural Networks56
2018ICMLExtracting Automata from Recurrent Neural Networks Using Queries and Counterexamples169Pytorch
2019ICMLTowards A Deep and Unified Understanding of Deep Neural Models in NLP80Pytorch
2019ICAISInterpreting black box predictions using fisher kernels80
2019ACMFATExplaining explanations in AI558
2019AAAIInterpretation of neural networks is fragile597Tensorflow
2019AAAIClassifier-agnostic saliency map extraction23
2019AAAICan You Explain That? Lucid Explanations Help Human-AI Collaborative Image Retrieval11
2019AAAIWUnsupervised Learning of Neural Networks to Explain Neural Networks28
2019AAAIWNetwork Transplanting4
2019CSURA Survey of Methods for Explaining Black Box Models3088
2019JVCIRInterpretable convolutional neural networks via feedforward design134Keras
2019ExplainAIThe (Un)reliability of saliency methods515
2019ACLAttention is not Explanation920
2019EMNLPAttention is not not Explanation667
2019arxivAttention Interpretability Across NLP Tasks129
2019arxivInterpretable CNNs2
2018ICLRTowards better understanding of gradient-based attribution methods for deep neural networks775
2018ICLRLearning how to explain neural networks: PatternNet and PatternAttribution342
2018ICLROn the importance of single directions for generalization282Pytorch
2018ICLRDetecting statistical interactions from neural network weights148Pytorch
2018ICLRInterpretable counting for visual question answering55Pytorch
2018CVPRInterpretable Convolutional Neural Networks677
2018CVPRTell me where to look: Guided attention inference network454Chainer
2018CVPR[Multimodal Explanations: Justifying Decisions and Pointing to the
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号