Project Icon

StyleShot

多样化风格迁移的AI图像生成开源项目

StyleShot是一个开源的AI图像生成项目,专注于实现广泛的风格迁移能力。通过风格感知编码器和StyleGallery数据集,它能够模仿3D、扁平、抽象等多种风格,无需测试时微调。项目在风格迁移性能上展现出优势,为图像风格化研究提供了新的方向和可能性。

StyleShot: 任意风格的快照

                        Online Demo in HF

高俊尧, 刘彦辰, 孙亚楠, 唐寅豪, 曾艳红, 陈凯*, 赵彩荣*

(* 通讯作者, 项目负责人)

来自同济大学和上海人工智能实验室。

摘要

在本文中,我们展示了一个好的风格表示对于无需测试时调整的广义风格迁移至关重要且足够。我们通过构建一个风格感知编码器和一个组织良好的风格数据集StyleGallery来实现这一目标。通过专门设计用于风格学习,这个风格感知编码器经过解耦训练策略的训练,可以提取富有表现力的风格表示,而StyleGallery则赋予了泛化能力。我们还采用了一个内容融合编码器来增强图像驱动的风格迁移。我们强调,我们的方法StyleShot简单而有效,无需测试时调整即可模仿各种所需风格,如3D、平面、抽象甚至细粒度风格。严格的实验验证表明,与现有最先进的方法相比,StyleShot在广泛的风格范围内实现了卓越的性能。

架构图

新闻

开始使用

# 安装styleshot
git clone https://github.com/Jeoyal/StyleShot.git
cd StyleShot

# 创建conda环境
conda create -n styleshot python==3.8
conda activate styleshot
pip install -r requirements.txt

# 下载模型
git lfs install
git clone https://huggingface.co/Gaojunyao/StyleShot
git clone https://huggingface.co/Gaojunyao/StyleShot_lineart

模型

你可以从这里下载我们的预训练权重。要运行演示,你还需要下载以下模型:

推理

对于推理,你应该下载预训练权重并准备自己的参考风格图像或内容图像。

# 运行文本驱动的风格迁移演示
python styleshot_text_driven_demo.py --style "{风格图像路径}" --prompt "{提示词}" --output "{保存路径}"

# 运行图像驱动的风格迁移演示
python styleshot_image_driven_demo.py --style "{风格图像路径}"  --content "{内容图像路径}" --preprocessor "Contour" --prompt "{提示词}" --output "{保存路径}"

# 将styleshot与controlnet和t2i-adapter集成
python styleshot_t2i-adapter_demo.py --style "{风格图像路径}"  --condition "{条件图像路径}" --prompt "{提示词}" --output "{保存路径}"
python styleshot_controlnet_demo.py --style "{风格图像路径}"  --condition "{条件图像路径}" --prompt "{提示词}" --output "{保存路径}"

文本驱动风格迁移可视化

图像风格迁移可视化

训练

我们采用两阶段训练策略来训练我们的StyleShot,以更好地融合内容和风格。对于训练数据,您可以使用我们的训练数据集StyleGallery或将自己的数据集制作成json文件。

# 训练阶段1,仅训练风格组件。
accelerate launch --num_processes 8 --multi_gpu --mixed_precision "fp16" \
  tutorial_train_styleshot_stage_1.py \
  --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5/" \
  --image_encoder_path="{图像编码器路径}" \
  --image_json_file="{data.json}" \
  --image_root_path="{图像路径}" \
  --mixed_precision="fp16" \
  --resolution=512 \
  --train_batch_size=16 \
  --dataloader_num_workers=4 \
  --learning_rate=1e-04 \
  --weight_decay=0.01 \
  --output_dir="{输出目录}" \
  --save_steps=10000

# 训练阶段2,仅训练内容组件。
accelerate launch --num_processes 8 --multi_gpu --mixed_precision "fp16" \
  tutorial_train_styleshot_stage_2.py \
  --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5/" \
  --pretrained_ip_adapter_path="./pretrained_weight/ip.bin" \
  --pretrained_style_encoder_path="./pretrained_weight/style_aware_encoder.bin" \
  --image_encoder_path="{图像编码器路径}" \
  --image_json_file="{data.json}" \
  --image_root_path="{图像路径}" \
  --mixed_precision="fp16" \
  --resolution=512 \
  --train_batch_size=16 \
  --dataloader_num_workers=4 \
  --learning_rate=1e-04 \
  --weight_decay=0.01 \
  --output_dir="{输出目录}" \
  --save_steps=10000

StyleGallery

我们精心策划了一个风格平衡的数据集,称为StyleGallery,其中包含从公开可用数据集中提取的广泛多样的图像风格,用于训练我们的StyleShot。 要准备我们的数据集StyleGallery,请参考教程,或从这里下载json文件。

StyleBench

为解决基于参考的风格化生成缺乏基准的问题,我们建立了一个风格评估基准,包含490个参考图像中的73种不同风格。

免责声明

我们开发此仓库用于研究目的,因此它只能用于个人/研究/非商业用途。

引用

如果您发现StyleShot对您的研究和应用有用,请使用以下BibTeX进行引用:

@article{gao2024styleshot,
  title={StyleShot: A Snapshot on Any Style},
  author={Junyao, Gao and Yanchen, Liu and Yanan, Sun and Yinhao, Tang and Yanhong, Zeng and Kai, Chen and Cairong, Zhao},
  booktitle={arXiv preprint arxiv:2407.01414},
  year={2024}
}

致谢

该代码基于IP-Adapter构建。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号