Project Icon

transformer-debugger

深入洞察小型语言模型行为的自动化调试工具

Transformer Debugger是一款由OpenAI超级对齐团队开发的工具,专门用于分析小型语言模型的特定行为。该工具结合了自动化解释技术和稀疏自编码器,无需编写代码即可快速探索模型行为。它能识别影响特定行为的关键组件,自动生成解释,并追踪组件间的连接,从而揭示神经元回路。通过支持对前向传播的干预和观察,Transformer Debugger为研究人员提供了深入分析语言模型内部机制的强大功能。

TransformerEngine - 用于在 NVIDIA GPU 上加速 Transformer 模型的库
FP8GithubHopper GPUNVIDIATransformer Engine开源项目深度学习
Transformer Engine是NVIDIA推出的一个库,专门用于在其GPU上加速Transformer模型。该库支持8位浮点(FP8)精度,使训练和推理性能大幅提升的同时,内存使用降低。TE提供了一系列优化的构建模块和混合精度API,适用于各种流行的深度学习框架,保证精度不受影响。通过与主流大型语言模型库的集成,简化了FP8支持的实现,使Transformer模型的训练和推理更加高效和便捷,适用于多种NVIDIA GPU架构。
xFasterTransformer - 高效的大规模语言模型推理优化方案
GithubPython APIXeonxFasterTransformer大语言模型开源项目高性能
xFasterTransformer是一个为X86平台优化的大规模语言模型(LLM)推理解决方案,支持多插槽和节点的分布式运行,适用于大型模型推理。它提供C++和Python API,支持例如ChatGLM、Llama、Baichuan等流行的LLM模型,并可通过PyPI、Docker或从源代码进行安装。项目附带详细文档、API使用示例、基准测试代码和Web演示,确保用户能充分利用其高性能和高扩展性。
ByteTransformer - 为BERT类Transformer优化的高性能推理库
BERTByteTransformerGithubNVIDIA GPUTransformer开源项目高性能
ByteTransformer是一个为BERT类Transformer优化的高性能推理库,支持Python和C++ API,兼容固定长度和可变长度Transformer。通过对BERT例程中的QKV编码、软最大值、前馈网络、激活、层归一化和多头注意力机制进行优化,ByteTransformer为字节跳动的内部推理系统提升了性能。基准测试结果显示,相较于PyTorch、TensorFlow、FasterTransformer和DeepSpeed,ByteTransformer在A100 GPU上的推理速度更快。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
Automatic-Circuit-Discovery - 推进神经网络可解释性研究的自动化工具
ACDCGithub可解释性开源项目机器学习神经网络自动电路发现
Automatic Circuit DisCovery (ACDC)项目提供了一套自动化工具,用于探索神经网络内部机制,提高模型可解释性。项目包含NeurIPS 2023聚焦论文的配套代码,实现了ACDC算法、计算图编辑功能和可编辑计算图的底层实现。基于TransformerLens库开发,支持Python 3.8+环境,并提供完整的安装和使用文档。该工具为研究人员提供了深入分析神经网络内部结构的新方法。
EQTransformer - 人工智能地震信号检测与震相拾取工具
AIEQTransformerGithub地震检测开源项目深度学习相位拾取
EQTransformer是一款人工智能地震信号检测和震相拾取工具,采用深度神经网络和注意力机制。其层次架构专为地震信号设计,能够高效地同时执行信号检测和到达时间拾取。该工具不仅提供预测概率,还能估计模型不确定性。EQTransformer Python包提供多个功能模块,包括下载连续地震数据、数据预处理、使用预训练模型进行检测和拾取、构建测试新模型,以及简单的震相关联。
LLM4Decompile - 大型语言模型驱动的二进制代码反编译技术
GithubLLM4Decompile二进制代码反编译大语言模型开源项目源代码
LLM4Decompile是一款创新的开源大型语言模型,专注于二进制代码反编译。该模型能将Linux x86_64二进制文件转换为可读的C源代码,覆盖GCC的O0至O3优化级别。项目提供多个参数规模的模型版本,从1.3B到33B不等。其中,最新的22B-V2版本在HumanEval-Decompile基准测试中实现了63.6%的重新执行率。LLM4Decompile不仅可直接反编译二进制文件,还能优化Ghidra等工具生成的伪代码,为二进制分析和逆向工程领域提供了新的可能性。
Transformer-from-scratch - 简洁实现Transformer模型的入门教程
GithubLLMPyTorchTransformer开源项目模型训练自然语言处理
该项目展示了如何用约240行代码实现Transformer模型,包含基于PyTorch的训练演示和详细的Jupyter Notebook。使用450Kb样本数据集,在单CPU上20分钟内完成训练,帮助初学者理解大型语言模型的原理和实现过程。
test-demo-t5-qa - 探索Transformer模型的用途及风险
GithubHuggingfacetransformers使用案例开源项目技术规格模型模型卡环境影响
页面详情介绍了一种开发于🤗 transformers库的模型,概述其应用、预期用户和影响。同时,分析模型相关的偏见、风险和局限性,强调了解其技术和社会技术限制的重要性。提供初始使用的信息及优化建议。
Transformer-TTS - 神经语音合成系统
GithubPyTorchTacotronTransformer-TTS开源项目神经网络语音合成
Transformer-TTS,一个基于Pytorch的高效神经语音合成系统。它使用Transformer网络,且训练速度是传统seq2seq模型的3到4倍。不仅提供预训练模型,其合成语音质量经实验证明优异。同时,项目支持自定义学习模型及策略,包括Noam式预热衰减学习率及关键的梯度裁剪等,是语音合成研究的理想选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号