Project Icon

orca_mini_v3_13b

增强文本生成的Orca与Llama2结合模型

orca_mini_v3_13b项目利用Orca风格数据集和Llama2-13b模型的结合,实现高效文本生成。该模型在多项任务中表现卓越,如AI2推理挑战达到63.14%的准确率,HellaSwag则达到82.35%。此设计在多语言及复杂生成任务中具有显著优势。依照Llama-2的许可证规范使用,保证合规性。

Llama-3.2-3B-Instruct-uncensored-GGUF - 量化的语言模型版本,促进文本生成与信息获取
GithubHugging FaceHuggingfaceLlama-3.2-3B-Instruct-uncensored内幕交易开源项目文本生成模型量化
Llama-3.2-3B-Instruct-uncensored-GGUF项目是一个未过滤的量化语言模型版本,增强了文本生成的多样性和信息获取效率。通过llama.cpp的量化处理,该模型在保持高效性能的同时输出高质量响应。其特点包括在敏感话题上的信息提供更全面,响应拒绝次数少。支持研究和开发中的多场景应用,用户可以在相关平台上进行交互,实现从文本生成到信息提取的多领域应用。
MicroLlama - 预算内的大规模语言模型构建:300M Llama模型的探索
GithubHuggingfaceMicroLlamahuggingface开源开源项目文本生成模型语言模型
该项目在有限预算内,通过全面开源的方法构建了一个300M Llama语言模型。尽管性能不及更大型的模型,但以不到500美元的投入,在多数据集上表现出色,并在与类似参数的BERT模型比较时展现优势。项目使用Vast.ai的计算资源和AWS S3存储,对TinyLlama模型进行了调整,重点优化Slimpajama数据集。这一项目展示了低成本大规模模型开发的潜力,并为细化应用如轻量级聊天机器人提供了坚实基础。
Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - 基于Llama 3.1的高性能无限制语言模型
GithubHuggingfaceLlama-3.1人工智能模型开源模型开源项目文本生成模型自然语言处理
Llama-3.1-8B-Lexi-Uncensored-V2是一个基于Llama-3.1-8B-Instruct的无限制语言模型。在IFEval (0-Shot)测试中达到77.92%的准确率,展现出优秀性能。该模型遵循META LLAMA 3.1许可协议,允许商业使用。由于模型无限制特性,建议在部署前实施内容安全对齐,以确保合规使用。
Llama-3.2-1B - Meta推出多语言大规模语言模型 支持多种商业和研究场景
GithubHuggingfaceLlama 3.2人工智能多语言大语言模型开源项目模型自然语言处理
Llama-3.2-1B是Meta开发的多语言大规模语言模型,支持8种语言。采用优化的Transformer架构,经9T token训练,具128K上下文长度。适用于对话、检索、摘要等任务,性能优于多数开源和闭源模型。支持商业和研究用途,可开发AI助手、写作工具等。提供原始和量化版本,适应不同计算资源需求。该模型在多语言处理和应用灵活性方面表现出色。
Llama-3.1-8B - Meta推出的多语言大型语言模型 支持128K超长上下文
GithubHuggingfaceLlama 3.1Meta人工智能多语言大语言模型开源项目模型
Llama-3.1-8B是Meta公司推出的多语言大型语言模型,采用优化的Transformer架构,支持128K超长上下文。该模型在8种语言中进行预训练和指令微调,在通用对话和多语言任务上表现优异。Llama-3.1-8B适用于助手式聊天、自然语言生成等商业和研究场景,并提供自定义商业许可证。用户在遵守使用政策的前提下可广泛应用该模型。
Llama-3-8B-Lexi-Uncensored - 高性能多任务AI语言模型 无限制对话与灵活应用
GithubHuggingfaceLlama-3人工智能模型开源开源项目文本生成模型自然语言处理
Llama-3-8B-Lexi-Uncensored是一款强大的AI语言模型,在AI2推理挑战、HellaSwag常识理解和GSM8k数学问题等多项任务中表现卓越。该模型在开放式LLM排行榜上平均得分66.18,展现了其在多个领域的应用潜力。虽然模型具有高度灵活性,但使用时需注意实施适当的安全措施。遵循Meta的Llama许可协议,可用于商业及其他多种用途。
Llama-3.2-1B-Instruct-4bit - 精简高效的多语言文本生成工具
GithubHuggingfaceLlama 3.2Meta可接受使用政策开源项目机器学习模型许可协议
Llama-3.2-1B-Instruct-4bit是从Meta的Llama 3.2-1B-Instruct模型转换为MLX格式的产品,支持包括英语、德语、法语在内的多语言文本生成。引入4bit量化技术以提升运行效率与支持更大输入扩展。提供便捷的Python接口以实现文本生成,适合对话系统和内容创作等应用。遵循Meta的社区许可协议以确保合法使用。
Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - 提升文本生成技术的精度和合规性
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2准确性开源项目未过滤模型量化
基于Llama-3.1-8B-Instruct的项目,旨在提高文本生成的精确性和合规性,并遵循Meta的Llama 3.1社区协议。量化的Lexi模型在多种数据集上评估,IFEval数据集精度达77.92%。用户可自定义系统提示以优化效果,建议在服务部署前添加对齐层以确保合规。使用生成内容时需谨慎负责。
Llama-2-7b-hf - Meta开发的Llama 2开源大语言模型系列
GithubHuggingfaceLlama 2人工智能元宇宙大语言模型开源项目模型自然语言处理
Llama 2是Meta开发的开源大语言模型系列,包含7B、13B和70B三种参数规模。模型采用优化的Transformer架构,支持4k上下文长度,适用于对话等多种自然语言任务。Llama 2在多项基准测试中表现优异,提供预训练和微调版本,可用于商业和研究。该项目开放了详细的使用说明和评估数据,促进了大语言模型的开放研究。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号