Project Icon

mt5-small-parsinlu-opus-translation_fa_en

基于mT5的波斯语至英语机器翻译模型

该开源项目提供了一个基于mT5的波斯语至英语机器翻译模型。模型利用MT5ForConditionalGeneration和MT5Tokenizer实现翻译功能,并附有Python代码示例说明使用方法。支持宗教语句、日常对话和技术内容等多种文本类型的翻译。作为parsinlu项目的组成部分,此模型为有波斯语-英语翻译需求的用户提供了实用工具。

opus-mt-en-he - 基于OPUS数据集的英语-希伯来语机器翻译模型
GithubHuggingfaceOPUS-MT开源项目数据集机器翻译模型模型评估英语希伯来语翻译
这是一个基于transformer-align架构的英语-希伯来语翻译模型,采用Apache-2.0开源协议。模型在OPUS数据集上训练,使用规范化和SentencePiece进行预处理,在Tatoeba测试集上获得40.1 BLEU分和0.609 chr-F分。模型提供训练权重下载,可用于英语和希伯来语之间的翻译任务。
opus-mt-en-hy - 英语到亚美尼亚语翻译模型,促进多语言交流
BLEUGithubHuggingfaceSentencePieceeng-hyetranslation开源项目模型
该项目提供英亚(英语-亚美尼亚语)翻译模型,基于Transformer-Align架构,结合SentencePiece处理,实现文本转换。其翻译能力在Tatoeba测试集中获得16.6的BLEU分数,表明良好的质量。用户可在GitHub页面查看详情,下载原始权重及测试集文件。项目采用Apache-2.0协议,便于开发者和研究人员在多语言环境中使用和再开发。
opus-mt-en-eu - 基于Transformer的英语-巴斯克语机器翻译模型 Tatoeba测试集BLEU 31.8
GithubHuggingfaceTatoeba-Challengetransformer-align巴斯克语开源项目机器翻译模型英语
opus-mt-en-eu是一个英语到巴斯克语的机器翻译模型,基于transformer-align架构构建。模型使用SentencePiece进行预处理,在Tatoeba测试集上达到31.8 BLEU分数和0.590 chr-F分数。由Helsinki-NLP开发并以Apache-2.0许可发布,适用于英语到巴斯克语的翻译任务。模型支持单向翻译,可应用于需要高质量英巴翻译的场景。
opus-mt-tr-en - 基于OPUS数据集的土耳其语英语机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MT开源项目数据集机器翻译模型语言模型
opus-mt-tr-en是一个基于Transformer架构的土耳其语到英语机器翻译模型。该模型使用OPUS数据集训练,通过normalization和SentencePiece进行预处理。在多个测试集上表现优异,Tatoeba测试集上的BLEU分数达63.5。模型权重可供下载,便于研究人员和开发者进行评估和应用。
opus-mt-tc-big-en-pt - 从英译葡的先进神经机器翻译模型
GithubHuggingfaceMarian NMTOPUS-MT句子标记开源项目机器翻译模型神经机器翻译
该开源项目提供的神经机器翻译模型,旨在高效地将英语翻译为葡萄牙语。作为OPUS-MT项目的一部分,模型采用Marian NMT框架训练,并转化到PyTorch以兼容Transformers库。利用flores101-devtest等高质量数据集进行训练与评估,提供多语言目标支持,可应用于多种翻译场景。通过简单的Python示例代码,用户可以快速上手执行翻译任务。项目获得了欧盟资助,并得到了CSC -- IT Center for Science的支持。
opus-mt-et-en - 爱沙尼亚语到英语的高效翻译模型
BLEUGithubHuggingfaceSentencePieceopus-mt-et-entransformer-align开源项目模型翻译
此项目是一个开源的爱沙尼亚语到英语翻译模型,采用transformer-align架构和SentencePiece技术进行预处理。基于opus数据集进行训练,提供模型权重和测试集文件的下载链接。在多种测试集上表现出色,例如在Tatoeba测试集上取得了59.9的BLEU得分。该模型适合处理需要高质量翻译的爱沙尼亚语到英语文本。
opus-mt-hu-en - 基于OPUS数据集的匈牙利语-英语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-hu-en开源项目数据集机器翻译模型自然语言处理
此项目为基于transformer-align架构的匈牙利语到英语机器翻译模型,采用OPUS数据集训练。模型使用normalization和SentencePiece进行预处理,在Tatoeba测试集上获得52.9的BLEU分数和0.683的chr-F分数。项目提供模型权重、测试集翻译结果及评估数据下载。
bert-base-parsbert-uncased - 基于BERT的波斯语自然语言处理模型ParsBERT
BERTGithubHuggingfaceParsBERT开源项目模型波斯语言模型深度学习自然语言处理
ParsBERT是一个基于BERT架构的波斯语预训练模型,使用超过200万份多样化文档构建而成。该模型在情感分析、文本分类和命名实体识别等任务中表现卓越,优于多语言BERT等其他模型。ParsBERT采用全词遮蔽策略,为波斯语自然语言处理研究奠定了坚实基础,推动了相关技术的发展。
bert-fa-base-uncased - 波斯语领域预训练的单语言Transformer模型
GithubHuggingfaceParsBERT命名实体识别开源项目情感分析模型语言模型预训练
ParsBERT是一个基于Transformer架构的波斯语单语言模型,通过大规模波斯语料库预训练,能够处理情感分析、文本分类及命名实体识别等任务。ParsBERT v2.0通过词汇表重构和新波斯语料库微调,在多项任务中表现优于多语言BERT和其他模型,提升了波斯语语言处理的效果。该模型支持掩码语言建模和后续任务微调,用户可在Hugging Face平台获取不同任务的微调版本。
Opus-MT - 多语言神经机器翻译的开源框架
GithubMarian-NMTOPUS-MT多语言开源开源项目机器翻译
Opus-MT是一个开源的神经机器翻译项目,基于Marian-NMT框架开发。该项目利用OPUS数据集训练模型,结合SentencePiece分词和eflomal词对齐技术,提供多语言翻译功能。Opus-MT支持基于Tornado的Web应用和WebSocket服务两种部署方式,并提供大量预训练模型供用户下载。在Tiyaro.ai平台上,Opus-MT部署了543个在线演示API,方便用户体验。这个项目致力于为全球用户提供开放、便捷的翻译服务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号