Project Icon

thainer-corpus-v2-base-model

泰语命名实体识别模型,支持地名、人名等信息的高精度识别

该命名实体识别模型基于Thai NER v2.0语料库训练,专为泰语文本的实体分类而设计。通过WangchanBERTa基础模型训练,提供高精度和F1分数,确保识别结果准确。需要使用自定义代码进行推理以避免错误标签,相关信息和下载链接在HuggingFace Hub提供。

项目介绍:thainer-corpus-v2-base-model

thainer-corpus-v2-base-model 是一个用于泰语命名实体识别(NER)的模型。该模型使用了 Thai NER v2.0 语料库进行训练,能够识别和分类泰语文本中的特定实体。

背景信息

命名实体识别(简称NER)是一种自然语言处理技术,广泛应用于信息抽取中。它可以自动识别出文本中如人名、地名、组织名等实体。在这一项目中,开发者训练了一个针对泰语的NER模型。

数据集与训练

模型使用了 Thai NER v2.0 语料库进行训练。训练使用的代码和数据分割可以在这里找到。训练过程中,模型基于 WangchanBERTa 基础模型进行了调整,具体的性能指标如下:

  • 验证集性能

    • 精确度(Precision): 0.830
    • 召回率(Recall): 0.874
    • F1值: 0.851
    • 准确度(Accuracy): 0.974
  • 测试集性能

    • 精确度: 0.820
    • 召回率: 0.878
    • F1值: 0.848
    • 准确度: 0.972

下载和使用

模型与相关数据集可以从HuggingFace Hub下载。尽管 HuggingFace 支持许多语言的推理,但是对于泰语的推理会给出错误的标签。因此,为了正确执行推理,用户需使用自定义代码。

以下是一个简单的使用示例,演示如何加载模型并进行推理:

from transformers import AutoTokenizer
from transformers import AutoModelForTokenClassification
from pythainlp.tokenize import word_tokenize  # 需安装 pythainlp
import torch

name="pythainlp/thainer-corpus-v2-base-model"
tokenizer = AutoTokenizer.from_pretrained(name)
model = AutoModelForTokenClassification.from_pretrained(name)

sentence = "...."  # 输入泰语句子
cut = word_tokenize(sentence.replace(" ", "<_>"))
inputs = tokenizer(cut, is_split_into_words=True, return_tensors="pt")

# 前向传播
outputs = model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
logits = outputs[0]
predictions = torch.argmax(logits, dim=2)
predicted_token_class = [model.config.id2label[t.item()] for t in predictions[0]]

def fix_span_error(words, ner):
    _ner = []
    _new_tag = []
    for i, j in zip(words, _ner):
        i = tokenizer.decode(i)
        if i.isspace() and j.startswith("B-"):
            j = "O"
        if i in ['', '<s>', '</s>']:
            continue
        if i == "<_>":
            i = " "
        _new_tag.append((i, j))
    return _new_tag

ner_tag = fix_span_error(inputs['input_ids'][0], predicted_token_class)
print(ner_tag)

引用

如果使用了此项目的数据或模型,请引用以下参考:

Wannaphong Phatthiyaphaibun. (2022). Thai NER 2.0 (2.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7761354

或者使用 BibTeX 格式:

@dataset{wannaphong_phatthiyaphaibun_2022_7761354,
  author       = {Wannaphong Phatthiyaphaibun},
  title        = {Thai NER 2.0},
  month        = sep,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {2.0},
  doi          = {10.5281/zenodo.7761354},
  url          = {https://doi.org/10.5281/zenodo.7761354}
}

总的来说,thainer-corpus-v2-base-model 是一个强大的工具,用于处理泰语文本中的命名实体识别,能够在多个领域提供重要支持。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号