Project Icon

ShapeLLM

革新3D理解的多模态大语言模型

ShapeLLM是首个面向智能体交互的3D多模态大语言模型,支持单视图彩色点云输入。该项目引入了3D问答基准3D MM-Vet,并改进了点云编码器ReCon++。ShapeLLM在多项3D理解任务中表现出色,为智能体与3D环境交互提供了新思路。

PixelLM - 像素级推理与理解的大型多模态模型
GithubMUSE数据集PixelLM像素级推理图像分割多模态大模型开源项目
PixelLM是一种创新的大型多模态模型,专注于像素级推理和理解。它能处理开放集目标和复杂推理任务,同时保持LMM的基本结构。通过轻量级像素解码器和分割码本,PixelLM实现高效mask生成。项目同时推出MUSE数据集,为多目标推理分割研究提供高质量基准。在多个基准测试中,PixelLM展现出优越性能。
LLaMA-VID - 支持长视频处理的多模态大语言模型
GithubLLaMA-VID多模态大语言模型开源项目视觉语言模型视频理解
LLaMA-VID是一个新型多模态大语言模型,可处理长达数小时的视频。它通过增加上下文令牌扩展了现有框架的能力,采用编码器-解码器结构和定制令牌生成策略,实现对图像和视频的高效理解。该项目开源了完整的模型、数据集和代码,为视觉语言模型研究提供了有力工具。
EmbodiedScan - 全面多模态3D感知套件,提高具身AI的理解能力
3D感知EmbodiedScanGithubMMScan多模态开源项目深度学习
EmbodiedScan及其系列如MMScan是专为多模态3D感知设计的开放数据集与基准,用于深入理解第一人称3D场景。包含超过5000次扫描、100万RGB-D视图、语言提示和160k 3D定向框。基于此数据库的Embodied Perceptron展示了在3D感知和语言定位中的优秀表现,适用于计算机视觉和机器人领域。通过我们的演示和基准测试,了解详细信息和应用案例。
ControlLLM - 通过图搜索增强大语言模型工具使用能力实现复杂任务解决
ControlLLMGithub任务分解图搜索多模态工具大语言模型开源项目
ControlLLM框架通过图搜索方法提升大语言模型的多模态工具使用能力。其核心包括任务分解器、基于图的思维范式和执行引擎,有效解决复杂任务。该框架在图像、音频和视频处理等领域展现出高准确性和效率,为大语言模型应用开辟新途径。
Awesome-Multimodal-Large-Language-Models - 多模态大语言模型研究资源与最新进展汇总
Github多模态大语言模型开源项目指令微调模型评估视觉语言模型视频理解
该项目汇总了多模态大语言模型(MLLMs)领域的最新研究成果,包括论文、数据集和评估基准。涵盖多模态指令微调、幻觉、上下文学习等方向,提供相关代码和演示。项目还包含MLLM调查报告及MME、Video-MME等评估基准,为研究人员提供全面参考。
SLAM-LLM - 专注语音语言音频音乐处理的多模态大模型训练工具
GithubSLAM-LLM多模态大语言模型开源项目语音处理音乐处理音频处理
SLAM-LLM是一款开源深度学习工具包,为多模态大语言模型(MLLM)训练而设计。它专注于语音、语言、音频和音乐处理,提供详细训练方案和高性能推理检查点。支持自动语音识别、文本转语音等多种任务,具备易扩展性、混合精度训练和多GPU训练等特点,适合研究人员和开发者使用。
Multimodal-AND-Large-Language-Models - 多模态与大语言模型前沿研究综述
Github人工智能多模态大语言模型开源项目机器学习视觉语言模型
本项目汇总了多模态和大语言模型领域的最新研究进展,涵盖结构化知识提取、事件抽取、场景图生成和属性识别等核心技术。同时探讨了视觉语言模型在推理、组合性和开放词汇等方面的前沿问题。项目还收录了大量相关综述和立场文章,为研究人员提供全面的领域概览和未来方向参考。
Awesome-Multimodal-LLM - 大语言模型(LLM)在多模态学习中的最新研究趋势
GithubLLM多模态学习开源开源项目模型微调神经网络
本页面介绍大语言模型(LLM)在多模态学习中的最新研究趋势,包括文本、视觉(图像和视频)、音频等多种模态。重点讨论如LLaMA、Alpaca和Bloom等开源且适合研究的LLM骨干模型及其学习方法,如全量微调、参数有效微调、上下文学习等。同时列举了具体的多模态LLM模型实例,如OpenFlamingo和MiniGPT-4,以及评估方法,如MultiInstruct和POPE,提供科研人员了解和研究LLM引导多模态学习的资源。
MoE-LLaVA - 高效视觉语言模型的新方向
GithubMoE-LLaVA多模态学习大视觉语言模型开源项目性能表现稀疏激活
MoE-LLaVA项目采用混合专家技术,实现了高效的大规模视觉语言模型。该模型仅使用3B稀疏激活参数就达到了与7B参数模型相当的性能,在多项视觉理解任务中表现优异。项目提供简单的基线方法,通过稀疏路径学习多模态交互,可在8张A100 GPU上1天内完成训练。MoE-LLaVA为构建高性能、低参数量的视觉语言模型探索了新的方向。
LLaVA - 提升大型语言与视觉模型的视觉指令调优
GPT-4GithubLLaVA多模态交互大型语言与视觉模型开源项目视觉指令调优
LLaVA项目通过视觉指令调优提升大型语言与视觉模型的性能,达到了GPT-4级别。最新更新包括增强版LLaVA-NeXT模型及其在视频任务上的迁移能力,以及高效的LMMs-Eval评估管道。这些更新提升了模型的多任务和像素处理能力,支持LLama-3和Qwen等不同规模的模型,并提供丰富的示例代码、模型库和数据集,方便用户快速上手和深度研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号