Project Icon

wav2vec-english-speech-emotion-recognition

英语语音情感识别模型:Wav2Vec 2.0的微调应用

此项目展示了Wav2Vec 2.0模型在英语语音情感识别任务中的应用。通过使用SAVEE、RAVDESS和TESS数据集进行微调,模型能够识别7种基本情绪。在评估集上,模型达到了97.463%的准确率。这一成果为语音情感分析领域提供了新的可能性,可应用于语音交互系统和情感计算研究。

facial_emotions_image_detection - ViT模型驱动的人脸表情识别系统
GithubHuggingfaceViT人脸情绪识别图像分类开源项目情感分析模型深度学习
这个开源项目基于谷歌的ViT-Base模型,实现了91%准确率的人脸表情识别。系统可识别七种基本情绪:悲伤、厌恶、愤怒、中性、恐惧、惊讶和快乐。项目代码和详细实现过程可在Kaggle上获取,为情感分析和人机交互研究提供了有力支持。
wav2vec2-large-xlsr-53-german - 优化德语自动语音识别的开源模型
Common VoiceGithubHuggingfaceWav2Vec2开源项目德语模型深度学习语音识别
本项目利用wav2vec2-large-xlsr-53-german模型对德语Common Voice数据集进行自动语音识别,得到WER为18.5%的结果。项目采用Torchaudio和Transformers库,并使用Resample进行音频预处理。该模型在语音转文字应用中具有广泛的研究价值。
distilbert-base-multilingual-cased-sentiment - 多语种情感分析模型的高效文本分类能力
Amazon评论GithubHuggingfacedistilbert-base-multilingual-cased-sentiment开源项目情感分析文本分类机器学习模型
本项目基于distilbert-base-multilingual-cased模型进行微调,在amazon_reviews_multi数据集上实现了优异的文本分类效果,准确率和F1值均为0.7648。模型通过优化训练参数和分布式数据处理,实现高效运行,适合多语言情感分析应用场景,可用于全球市场的用户评价分析。
wav2vec2-xls-r-300m - Facebook开发的大规模多语言预训练语音模型
GithubHuggingfaceXLS-Rwav2vec 2.0多语言模型开源项目模型语音识别预训练模型
wav2vec2-xls-r-300m是Facebook AI研发的大规模多语言预训练语音模型。该模型在436,000小时的未标记语音数据上预训练,涵盖128种语言,采用wav2vec 2.0目标函数,拥有3亿参数。它可应用于自动语音识别、翻译和分类等任务,在CoVoST-2语音翻译基准测试中显著提升了性能。
wav2vec2-large-xlsr-53-spanish - Wav2Vec2模型在西班牙语语音识别中的表现
Common VoiceGithubHuggingfaceWav2Vec2开源项目模型自动语音识别西班牙语音频
项目在Common Voice ES测试集上测试了Wav2Vec2模型的性能,语音识别错误率为17.6%。此项目使用Facebook发布的模型,与Torchaudio结合进行数据预处理,实现了语音到文本的转化,展示了语音处理与自动语音识别领域的最新进展。
tiny-bert-sst2-distilled - 轻量级BERT文本情感分类模型
BERTGithubHuggingface开源项目数据集微调文本分类机器学习模型模型训练
tiny-bert-sst2-distilled模型通过对BERT基础版本进行蒸馏优化,专注于文本情感分类任务。该模型在SST-2评估集上达到83.26%的准确率,保持了不错的性能表现。模型架构采用2层transformer结构,隐藏层维度为128,具有轻量化特点,适合在计算资源有限的环境中部署使用。
distilbert-base-uncased-finetuned-sst-2-english - JavaScript情感分析中的ONNX优化
GithubHuggingfaceONNXTransformers.jsWebML变压器开源项目情感分析模型
基于ONNX权重实现Transformers.js的兼容性,能够快速执行情感分析。安装Transformers.js库后,即可使用预训练模型进行高效的文本情感分析。这种方法有效提高了模型运行速度,并支持WebML,是JavaScript开发者的重要工具。
chinese_speech_pretrain - 中文语音预训练模型,wav2vec 2.0和HuBERT的开源实现
GithubHuBERTWenetSpeechwav2vec 2.0中文语音识别开源项目语音预训练模型
chinese_speech_pretrain项目开源了基于WenetSpeech数据集训练的中文语音预训练模型。项目包含wav2vec 2.0和HuBERT的BASE与LARGE版本,均使用1万小时多样化中文语音数据训练。模型在自动语音识别任务中表现优异,尤其适合低资源场景。项目提供模型下载及使用指南,可用于语音识别、语音合成等研究领域。
data2vec-audio-base-960h - 利用自监督学习提升语音识别效率的开源框架
Data2VecGithubHuggingfaceTransformer开源项目模型自动语音识别自监督学习语言模型
Data2Vec是一种开源模型,基于Librispeech数据集进行960小时的16kHz语音音频的预训练和微调,在语音识别领域表现优异。利用自监督学习与自蒸馏手段,Data2Vec准确提取上下文信息,优化了自动语音识别的表现。在LibriSpeech的测试中,取得了“clean”任务2.77和“other”任务7.08的词错误率(WER),体现了其在业内的竞争力。
twitter-roberta-base-emotion-multilabel-latest - 精确识别推文情绪的多标签分类模型
GithubHuggingfacetweetnlptwitter-roberta-base-emotion-multilabel-latest多标签分类开源项目情感分析机器学习模型
该项目微调了cardiffnlp/twitter-roberta-base-2022-154m模型,专注于SemEval 2018情感分析任务,显著增强推文的多标签情绪分类能力。模型在测试集上的F1 micro为0.7169,F1 macro为0.5464,是推文情感分析的理想选择。适用于tweetnlp和transformers中的文本分类任务,支持通过Python加载工具进行灵活使用,有助于社交媒体情感解析。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号