Project Icon

nbailab-base-ner-scandi

斯堪的纳维亚语言的命名实体识别模型

这个模型是NbAiLab/nb-bert-base的精调版本,适用于丹麦语、挪威语、瑞典语、冰岛语和法罗语的命名实体识别(NER)。通过整合DaNE、NorNE、SUC 3.0和WikiANN的一些数据集,模型可以提供高精度的NER结果,并支持多种语言包括英语。识别的实体类型包括人名、地名、组织名及其他类别。模型以Micro-F1得分约为89%的表现,以及4.16样本/秒的处理速度表现出色,同时模型体积合理,带来好的准确性和效率平衡。

ner-english-ontonotes - Flair框架英语命名实体识别模型支持18类实体
FlairGithubHuggingface命名实体识别序列标注开源项目机器学习模型自然语言处理
这是一个基于Flair框架的英语命名实体识别模型,能够识别18种实体类型,包括人名、地点和组织等。模型采用Flair embeddings和LSTM-CRF架构,在Ontonotes数据集上的F1分数为89.27%。该模型可应用于多种自然语言处理任务,并且可以通过简单的Python代码实现NER预测。
ner-bert-base-cased-pt-lenerbr - 葡萄牙语法律文本的BERT命名实体识别模型
BERTGithubHuggingfaceLeNER-BrNER开源项目模型法律领域葡萄牙语
这是一个针对葡萄牙语法律文本的命名实体识别模型,基于BERT架构在LeNER-Br数据集上微调而来。模型在测试集上取得了89.26%的F1分数,可识别多种法律实体类型,包括判例、法规、组织机构等。该模型为葡萄牙语法律文本分析提供了有力支持,可通过HuggingFace平台或Python代码进行使用。
ner-spanish-large - 大规模西班牙语实体识别 精确识别四类标签
FlairGithubHuggingfaceXLM-R人工智能命名实体识别开源项目模型西班牙语
Flair西班牙语实体识别模型,采用XLM-R嵌入和FLERT技术,训练于CoNLL-03西班牙数据集,F1得分90.54。支持识别人名、地名、组织名及其他标签,适合需要文本上下文精确理解的应用。
small-e-czech-finetuned-ner-wikiann - 捷克语命名实体识别模型精细化
GithubHuggingfacesmall-e-czech-finetuned-ner-wikiann开源项目数据集模型精度训练
这是一个基于Seznam/small-e-czech的微调模型,专用于wikiann数据集的捷克语命名实体识别。模型在精度、召回率和F1分数上分别达到0.8713、0.8970和0.8840,总体准确率为0.9557。项目采用Transformer、PyTorch等技术框架,使用线性学习率调度器,经过20个epoch的训练。适合需要捷克语文本命名实体识别的开发者和研究人员使用。
ner-english-ontonotes-fast - 基于Flair框架的英文命名实体识别模型
FlairGithubHuggingfaceOntonotes命名实体识别开源项目模型深度学习自然语言处理
基于Flair框架开发的英文命名实体识别模型,支持识别人名、地点、组织机构等18类实体。模型在Ontonotes数据集上F1分数达到89.3%,通过Python API可快速集成使用。适用于各类英文文本的命名实体识别任务。
bengali_language_NER - 在Wikiann数据集上使用多语言BERT模型微调,实现孟加拉语实体识别
Bengali Named Entity RecognitionF1评分GithubHuggingfaceWikiann多语言开源项目模型精调
该项目使用Wikiann数据集微调bert-base-multilingual-cased模型,实现孟加拉语命名实体识别。标签分类涵盖人物、组织、地点,高训练集F1分数达0.9979,测试集为0.9673,并提供实例代码,适合研究语言处理与语义分析的用户。
roberta-large-ner-english - 基于RoBERTa的英语命名实体识别模型 擅长处理非正式文本
GithubHuggingFaceHuggingfaceNERroberta-large实体识别开源项目模型自然语言处理
roberta-large-ner-english是一个基于RoBERTa大型模型微调的英语命名实体识别模型。它在CoNLL-2003数据集上训练,在验证集上实现了97.53%的F1分数。该模型在处理电子邮件、聊天等非正式文本时表现优异,尤其擅长识别不以大写字母开头的实体。相比SpaCy,它在非正式文本上的表现更出色。模型可识别人名、组织、地点和杂项实体,并可通过HuggingFace库轻松集成到NLP项目中。
bert-base-uncased-conll2003 - 基于BERT的CoNLL-2003数据集命名实体识别模型
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目模型模型微调自然语言处理
此模型是基于bert-base-uncased在CoNLL-2003数据集上微调的命名实体识别模型。经过2轮训练,模型在测试集上展现出优秀性能:精确率达0.8885,召回率为0.9046,F1分数为0.8965,准确率高达0.9781。模型采用Adam优化器和线性学习率调度器,为NLP领域提供了一个高效的命名实体识别解决方案。
ner-english-fast - 高效识别英语文本中的人名、地点和组织实体
FlairGithubHuggingfaceLSTM-CRF命名实体识别开源项目机器学习模型自然语言处理
ner-english-fast是基于Flair框架的命名实体识别模型,可识别英语文本中的人名、地点、组织和其他实体。该模型在CoNLL-03数据集上的F1分数为92.92,采用Flair嵌入和LSTM-CRF架构。它易于集成到NLP应用中,适用于文本分析和信息提取任务。模型支持快速部署,可通过简单的Python代码调用。
ner-english-large - 基于FLERT技术的英语命名实体识别开源模型
FlairGithubHuggingface命名实体识别序列标注开源项目模型深度学习自然语言处理
ner-english-large是基于Flair框架的英语命名实体识别模型,采用FLERT技术和XLM-R嵌入。该模型可识别人名、地点、组织和其他实体,F1分数为94.36。它易于集成,适用于多种NLP任务,为研究人员和开发者提供了实用的英语文本分析工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号