Project Icon

bangla-bert-base

预训练孟加拉语模型,增强自然语言处理效果

Bangla BERT Base是一款为孟加拉语开发的预训练语言模型,现已在Hugging Face平台上可用。该模型通过BERT的Masked Language Modeling进行训练,使用来自Bengali Commoncrawl和Wikipedia的语料库,并借助BNLP包进行词汇表构建。採用了bert-base-uncased架构,共有12层、768个隐藏单元、12个注意力头和110M参数。经过100万步训练,它在情感分析、仇恨言论检测和新闻分类等下游任务中表现突出,与多语言BERT和Bengali Electra相比,提高了精度。尤其是在Bengali NER任务中,评估结果相对优秀。该模型已经被应用于多项研究,是处理孟加拉语NLP任务的可靠工具。

项目介绍:Bangla-Bert-Base

Bangla-Bert-Base 是一个预训练的孟加拉语言模型,致力于提升孟加拉语言的自然语言处理能力。它基于 BERT(Bidirectional Encoder Representations from Transformers)模型进行开发,模型在 Hugging Face 的模型库中已可供使用。该项目由 Sagor Sarker 开发,并发布在 GitHub 上。

语料库详情

Bangla-Bert-Base 的训练语料来自于两个主要来源:

这些数据被下载后,经过预处理,形成符合 BERT 格式的输入,即每行一个句子,每个新文档之间有一个空行。

词汇表构建

项目使用了 BNLP 包来训练孟加拉语的 sentencepiece 模型,词汇表大小为 102025。这个词汇表经过处理后成为符合 BERT 格式的文件。这份词汇表可以在 GitHub 和 Hugging Face 模型库中找到。

训练详情

  • Bangla-Bert 的训练代码来自于 Google BERT 的 GitHub 仓库。
  • 目前发布的模型采用了 bert-base-uncased 的模型架构(12 层,768 隐藏层,12 个头,总共 1.1 亿参数)。
  • 总训练步数为 100 万步。
  • 模型在单个 Google Cloud GPU 上进行训练。

评估结果

语言模型评估结果

在 100 万步的训练后,模型取得了如下评估结果:

  • 总损失:2.2406516
  • 掩码语言模型准确率:0.60641736
  • 掩码语言模型损失:2.201459
  • 下一个句子准确率:0.98625
  • 下一个句子损失:0.040997364
  • 困惑度:约为 9.393

下游任务评估结果

  • 孟加拉语分类基准数据集评估

该模型在情感分析、仇恨言论识别和新闻主题任务上表现出色,相较于其他模型如 mBERT 和 Bengali Electra,Bangla BERT Base 取得了最佳效果。

模型情感分析仇恨言论新闻主题平均值
mBERT68.1552.3272.2764.25
Bengali Electra69.1944.8482.3365.45
Bangla BERT Base70.3771.8389.1977.13
  • Wikiann 数据集评估

在 Wikiann 孟加拉语NER数据集的评估中,Bangla-BERT-Base 取得了第三名,表现仅次于 mBERT 和 XLM-R。

基础预训练模型F1 分数准确率
mBERT-uncased97.1197.68
XLM-R96.2297.03
Indic-BERT92.6694.74
Bangla-BERT-Base95.5797.49

使用方法

Bangla BERT Tokenizer

使用预训练的 Bangla BERT Tokenizer 进行文本标记化:

from transformers import AutoTokenizer

bnbert_tokenizer = AutoTokenizer.from_pretrained("sagorsarker/bangla-bert-base")
text = "আমি বাংলায় গান গাই।"
bnbert_tokenizer.tokenize(text)
# 输出:['আমি', 'বাংলা', '##য', 'গান', 'গাই', '।']

掩码语言建模

可以直接使用该模型进行掩码语言建模:

from transformers import BertForMaskedLM, BertTokenizer, pipeline

model = BertForMaskedLM.from_pretrained("sagorsarker/bangla-bert-base")
tokenizer = BertTokenizer.from_pretrained("sagorsarker/bangla-bert-base")
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
for pred in nlp(f"আমি বাংলায় {nlp.tokenizer.mask_token} গাই।"):
  print(pred)

作者

该项目由 Sagor Sarker 开发。

引用

如果您认为此模型对您的研究或项目有帮助,请引用:

@misc{Sagor_2020,
  title   = {BanglaBERT: Bengali Mask Language Model for Bengali Language Understanding},
  author  = {Sagor Sarker},
  year    = {2020},
  url    = {https://github.com/sagorbrur/bangla-bert}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号