Project Icon

inceptionnext

结合Inception和ConvNeXt优势的高效图像识别模型

InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。

InceptionNeXt:当Inception遇上ConvNeXt

这是我们论文"InceptionNeXt:当Inception遇上ConvNeXt"中提出的InceptionNeXt的PyTorch实现。非常感谢Ross Wightman,InceptionNeXt已被整合到timm中。

InceptionNeXt 简述:为了加速ConvNeXt,我们通过以Inception风格分解大型深度卷积核来构建InceptionNeXt。我们的InceptionNeXt-T同时兼具ResNet-50的速度和ConvNeXt-T的准确性。

环境要求

我们的模型在PyTorch 1.13、NVIDIA CUDA 11.7.1和timm 0.6.11(pip install timm==0.6.11)环境中训练和测试。如果使用Docker,请查看我们使用的Dockerfile

数据准备:ImageNet数据集应具有以下文件夹结构,你可以使用这个脚本提取ImageNet。

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

模型

在ImageNet-1K上训练的InceptionNeXt

模型分辨率参数量MACs训练吞吐量推理吞吐量Top1准确率
resnet5022426M4.1G969314978.4
convnext_tiny22429M4.5G575241382.1
inceptionnext_tiny22428M4.2G901290082.3
inceptionnext_small22449M8.4G521175083.5
inceptionnext_base22487M14.9G375124484.0
inceptionnext_base_38438487M43.6G13942885.2

在ImageNet-1K上训练的ConvNeXt变体

模型分辨率参数量MACs训练吞吐量推理吞吐量Top1准确率
resnet5022426M4.1G969314978.4
convnext_tiny22429M4.5G575241382.1
convnext_tiny_k522429M4.4G675270482.0
convnext_tiny_k322428M4.4G798280281.5
convnext_tiny_k3_par1_222428M4.4G818274081.4
convnext_tiny_k3_par3_822428M4.4G847276281.4
convnext_tiny_k3_par1_422428M4.4G871280881.3
convnext_tiny_k3_par1_822428M4.4G901283380.8
convnext_tiny_k3_par1_1622428M4.4G916284680.1

吞吐量是在A100上使用全精度和128的批量大小测量的。详见吞吐量基准测试

使用方法

我们还提供了一个Colab笔记本,其中包含使用InceptionNeXt进行推理的步骤:Colab

验证

要评估我们的CAFormer-S18模型,请运行:

MODEL=inceptionnext_tiny
python3 validate.py /path/to/imagenet  --model $MODEL -b 128 \
  --pretrained

吞吐量基准测试

在上述环境中,我们在A100上使用128的批量大小进行吞吐量基准测试。报告的是"Channel First"和"Channel Last"内存布局中较好的结果。

对于Channel First:

MODEL=inceptionnext_tiny # convnext_tiny
python3 benchmark.py /path/to/imagenet  --model $MODEL

对于Channel Last:

MODEL=inceptionnext_tiny # convnext_tiny
python3 benchmark.py /path/to/imagenet  --model $MODEL --channel-last

训练

我们默认使用4096的批量大小,并展示如何使用8个GPU进行训练。对于多节点训练,请根据实际情况调整--grad-accum-steps

DATA_PATH=/path/to/imagenet
CODE_PATH=/path/to/code/inceptionnext # 在此修改代码路径

ALL_BATCH_SIZE=4096
NUM_GPU=8
GRAD_ACCUM_STEPS=4 # 根据您的GPU数量和内存大小进行调整
let BATCH_SIZE=ALL_BATCH_SIZE/NUM_GPU/GRAD_ACCUM_STEPS

MODEL=inceptionnext_tiny # inceptionnext_small, inceptionnext_base
DROP_PATH=0.1 # 0.3, 0.4

cd $CODE_PATH && sh distributed_train.sh $NUM_GPU $DATA_PATH \
--model $MODEL --opt adamw --lr 4e-3 --warmup-epochs 20 \
-b $BATCH_SIZE --grad-accum-steps $GRAD_ACCUM_STEPS \
--drop-path $DROP_PATH

其他模型的训练(微调)脚本可在scripts中找到。

引用

@article{yu2023inceptionnext,
  title={InceptionNeXt: when inception meets convnext},
  author={Yu, Weihao and Zhou, Pan and Yan, Shuicheng and Wang, Xinchao},
  journal={arXiv preprint arXiv:2303.16900},
  year={2023}
}

致谢

Weihao Yu感谢TRC项目和GCP研究积分对部分计算资源的支持。我们的实现基于pytorch-image-modelspoolformerConvNeXtmetaformer

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号