Project Icon

Gemma-2b-it-GGUF

多样化选择的Gemma量化模型

该项目以多种量化格式提供Gemma模型,从低质量损失的小型号到几乎无质量损失的大型号,满足多样化的应用需求。模型的量化由Second State Inc.负责,旨在优化性能和存储空间,适合多种AI部署环境。选择合适型号可在性能与资源使用间达到平衡。

aya-23-8B-GGUF - 更精细的文本生成量化选项分析
GithubHuggingfacetransformers开源项目文本生成模型质心量化
项目使用最先进的llama.cpp imatrix量化技术,支持多语言文本生成。多种量化格式,例如Q8_0和紧凑型IQ系列,提供应用的灵活性。用户依据硬件选择文件,以优化性能。创新量化处理为多语言文本生成提供了更高效的实现路径。
Halu-8B-Llama3-v0.35-GGUF - Halu-8B-Llama3-v0.35量化版本选择指南,助力性能优化
GithubHalu-8B-Llama3-v0.35Huggingfacehuggingface-clitransformers开源项目文本生成模型量化
项目Halu-8B-Llama3-v0.35提供多种量化版本,通过不同的量化类型优化模型性能,以适应各类RAM和VRAM的需求。可选择K-quants或I-quants,满足特定场景下的性能需求。高质量的I-quants适用于CPU和Apple Metal,性能优于传统K-quants但不兼容Vulcan,并附有详细的性能图表和量化指南,帮助选择适合的量化版本。
Llama-3.1-Nemotron-lorablated-70B-i1-GGUF - Llama-3.1的矩阵量化技术优化模型性能
GithubHugging FaceHuggingfaceLlama-3.1-Nemotron-lorablated-70BQuants使用方法开源项目模型量化
该项目提供了一系列用于Llama-3.1-Nemotron模型的加权和矩阵量化文件,旨在优化模型的性能和运行效率。这些文件在缩小模型尺寸的同时保持了质量,适用于多种场景。用户可依据需求选择适合的量化级别,具体使用说明请参阅指南。项目的成功得益于各方支持和资源,推动了更多高质量量化文件的开发,助力广泛的研究和应用。
Nemotron-Mini-4B-Instruct-GGUF - 量化模型应用指南与选择推荐
项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。
Hermes-3-Llama-3.1-70B-Uncensored-GGUF - 静态与多变量量化技术在Hermes-3-Llama模型中的应用
GithubHermes-3-Llama-3.1-70B-UncensoredHugging FaceHuggingfacetransformers工作站开源项目模型量化
Hermes-3-Llama-3.1-70B-Uncensored项目提供多种量化文件类型,包括更优的IQ-quants,适用于不同的性能需求。用户可参考TheBloke的材料了解GGUF文件的使用方法。不同的量化文件按大小排序,推荐使用性能较佳的Q4_K_S文件。项目特别感谢nethype GmbH提供的技术支持。
Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - Llama-3.1-8B-Lexi开源量化模型概览
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2开源项目权重模型模型文件量化高质量
项目介绍了Llama-3.1-8B-Lexi不同量化模型版本,涵盖从高性能到轻量化版本。基于llama.cpp的imatrix量化选项,模型支持在LM Studio中运行。项目提供从完整F32权重到轻量化IQ2_M版本的多种选择,适合不同内存及质量需求的用户,并提供详细的下载和性能指引,帮助在系统RAM与GPU VRAM间找到平衡。
Llama-3.1-WhiteRabbitNeo-2-8B-GGUF - Llama-3.1量化模型实现优化文本生成
GithubHuggingfaceLlama-3.1-WhiteRabbitNeo-2-8BRAM开源项目数据集文本生成模型量化
Llama-3.1-WhiteRabbitNeo-2-8B使用llama.cpp进行量化,以优化文本生成功能。项目提供多种量化方案,如Q6_K_L和Q5_K_L,适应不同内存条件,特别推荐Q6_K_L用于嵌入及输出权重以获取优异表现。用户可以使用huggingface-cli快捷下载所需文件,并通过Q4_0_X_X对ARM芯片进行性能优化。此项目提供详细决策指南,帮助选择合适的量化版本。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
llama-30b-supercot-GGUF - Llama 30B Supercot GGUF:多种量化格式与GPU加速
GPU加速GithubHuggingfaceLlama 30B Supercot开源项目新格式模型模型文件量化
GGUF格式的Llama 30B Supercot模型支持GPU加速,具备多个量化选项。由ausboss创建,提供多种格式适应不同需求,推荐Q4_K_M格式以实现性能与质量的平衡。GGUF是GGML的替代格式,兼容多种用户界面和库,如llama.cpp、text-generation-webui,适合于机器学习和AI领域应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号