Project Icon

Mistral-Nemo-Instruct-2407-GGUF

高效模型量化与优化指南

该项目介绍了多语言支持的Mistral-Nemo-Instruct-2407模型,其量化版本是由Second State Inc.完成的,涵盖从2位到16位的不同精度和质量损失模型。特别推荐使用具有最小质量损失的Q5_K_M和Q5_K_S版本。此外,还提供了在LlamaEdge上运行的服务和命令行应用指南,以便在配置上下文大小和自定义提示模板时满足不同应用的需求。本项目适合于在资源有限的环境中追求性能优化的用户。

Meta-Llama-3.1-8B-Instruct-bnb-4bit - 高效快速的开源大语言模型微调框架
GithubHuggingfaceLlama 3.1人工智能大语言模型开源项目模型模型微调自然语言处理
Meta-Llama-3.1-8B-Instruct是一款开源的大语言模型微调框架,能以2.4倍的速度和58%更少的内存微调Llama 3.1等模型。支持Llama 3.1、Gemma 2和Mistral等多种模型,提供Google Colab笔记本便于使用。该框架适用于商业和研究领域,支持多语言处理,具有128K上下文长度。其优化设计显著提升了模型微调效率,为开发者和研究人员提供了强大的工具。
Llama-3.1-Nemotron-70B-Instruct-HF - NVIDIA定制Llama 3.1模型提升AI回答质量
GithubHuggingfaceLlama-3.1-Nemotron-70B-InstructNVIDIA人工智能大型语言模型开源项目模型自然语言处理
Llama-3.1-Nemotron-70B-Instruct-HF是NVIDIA基于Llama 3.1定制的大语言模型,旨在提高AI回答的实用性。该模型在Arena Hard、AlpacaEval 2 LC和MT-Bench等自动评估基准上表现优异,超越了GPT-4和Claude 3.5等主流模型。通过RLHF技术训练,该模型能够准确回答问题并提供有价值的回应。开发者可以使用Hugging Face Transformers库部署该模型,但需要至少2个80GB GPU支持。
Llama-3.1-70B-Instruct-lorablated - Llama 3.1 70B的未删减版本与高效LoRA技术的应用
GithubHuggingfaceLlama 3.1合并方法应用程序开源项目模型模型适配量化
Llama 3.1 70B的未删减模型采用LoRA技术,实现了高效的模型融合。项目通过abliteration和任务算术技术创新地处理LoRA适配器,确保模型的完全开放性和高水平输出。在角色扮演等多功能应用中表现出色。该项目得到了@grimjim和@FailSpy的技术支持,并提供了详细的量化与配置指南,经过多次测试验证有效。用户可使用提供的命令轻松复现模型。
Chinese-Mixtral - 使用Sparse MoE架构的中文Mixtral模型
Chinese-MixtralGithubMixtral大模型量化开源项目指令精调稀疏混合专家模型
模型基于Mistral.ai的Mixtral模型开发,经过中文增量训练与指令精调,具备处理长文本(原生支持32K上下文,实测可达128K)的能力。包括中文Mixtral基础模型与指令模型,显著提升数学推理和代码生成性能。通过llama.cpp进行量化推理,最低仅需16G内存。开源提供代码、训练脚本与详细教程,支持多种推理和部署工具,适合个人电脑本地快速部署量化模型。
Qwen2-1.5B-Instruct - 性能卓越的开源指令调优语言模型
GithubHuggingfaceQwen2人工智能大语言模型开源项目机器学习模型自然语言处理
Qwen2-1.5B-Instruct是Qwen2系列中的指令调优语言模型,在语言理解、生成、多语言处理、编码和数学推理等方面表现优异。该模型基于改进的Transformer架构,通过大规模预训练和偏好优化,在多项基准测试中超越了大多数开源模型。Qwen2-1.5B-Instruct易于部署,适用于多种AI应用场景,能够高效处理复杂的语言任务。
solar-pro-preview-instruct-GGUF - 高效量化的GGUF格式Solar-Pro-Instruct模型
GGUFGithubHuggingfacellama.cppsolar-pro-preview-instruct开源项目文本生成模型量化模型
该项目提供Solar-Pro-Preview-Instruct模型的GGUF格式文件,支持2-8位量化。GGUF是llama.cpp团队开发的新格式,替代了旧有的GGML。这一格式广泛应用于llama.cpp、LM Studio等多个流行的本地部署工具和库中,为高效的本地文本生成任务提供支持。
Llama-3.2-1B-Instruct-GGUF - 通过量化优化技术改进多语言文本生成
GithubHuggingfaceLLMLlama 3.2Meta开源项目模型社区许可证许可协议
本项目采用llama.cpp和imatrix量化技术,提高了多语言文本生成的能力。结合Bartowski的校准文件,以及IQ和Q系列多种量化方法,明显降低了模型的困惑度并提高了文本生成的准确性。这些优化在多种条件下保持高效,且降低了存储空间的需求,提供更灵活的AI应用优化和部署方案。
Llama-3.2-3B-Instruct-bnb-4bit - Unsloth技术加速大型语言模型微调
GithubHuggingfaceLlama 3.2Unslothtransformers大语言模型开源项目微调模型
Llama-3.2-3B-Instruct-bnb-4bit项目利用Unsloth技术提高大型语言模型微调效率。该方法可将Llama 3.2、Gemma 2和Mistral等模型的微调速度提升2-5倍,同时降低70%内存占用。项目提供多个Google Colab笔记本,支持Llama-3.2、Gemma 2、Mistral等多种模型。这些笔记本操作简便,适合初学者使用,只需添加数据集并运行即可完成模型微调。
Phi-3.5-mini-instruct-GGUF - Microsoft Phi-3.5-mini模型的GGUF格式多位宽量化版本
GGUFGithubHuggingfacePhi-3.5开源项目文本生成本地部署模型量化模型
此项目提供Microsoft Phi-3.5-mini-instruct模型的GGUF格式量化版本。GGUF是llama.cpp团队推出的新格式,取代了GGML。支持2-bit至8-bit多种量化位宽,兼容多个GGUF支持工具,如llama.cpp和LM Studio。这些工具具备GPU加速和Web界面,便于本地部署和使用大型语言模型。
Qwen2.5-0.5B-Instruct-q4f16_1-MLC - 支持跨平台部署的轻量级对话系统
GithubHuggingfaceMLC-LLMQwen2.5REST服务开源项目模型模型量化聊天机器人
Qwen2.5-0.5B-Instruct-q4f16_1-MLC是Qwen2.5-0.5B-Instruct模型的MLC格式版本,专为MLC-LLM和WebLLM项目设计。这个轻量级指令对话模型支持命令行、REST服务器和Python API多种部署方式。通过q4f16_1量化技术,模型在保持性能的同时显著减小体积,适合资源受限环境。它可轻松集成到各类应用中,高效执行自然语言处理任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号