Project Icon

paraphrase-multilingual-mpnet-base-v2

跨语言句子向量化模型支持聚类和语义检索

paraphrase-multilingual-mpnet-base-v2是一个基于sentence-transformers的多语言句子嵌入模型,支持50多种语言。它将句子和段落映射为768维向量,适用于聚类和语义搜索。模型易于使用,通过pip安装即可快速集成。在Sentence Embeddings Benchmark上表现出色,采用XLMRobertaModel和平均池化层结构,可有效处理不同长度的文本输入。

Chinese-CLIP - 中文多模态嵌入和检索性能优化的领先方案
Chinese-CLIPGithub图文特征提取开源项目模型下载跨模态检索零样本图像分类
Chinese-CLIP项目,基于大规模中文图文对数据,专门针对中文领域的特点进行优化,提供高效的图文特征计算与相似度测算,实现零样本分类和跨模态检索。该项目改进了多个模型,包括ViT与ResNet结构,并在多个公开数据集上展示了显著的性能提升,为中文处理场景下的企业和研究者提供强大工具。
quantized-models - 提供多源量化模型以提升大语言模型推理效率
GithubHuggingfacequantized-modelstransformers大型语言模型开源项目文本生成推理模型量化模型
quantized-models项目整合了多种来源的量化模型,旨在提高大语言模型的推理效率。模型支持者包括TheBloke、LoneStriker、Meta Llama等,提供gguf、exl2格式的支持。用户可通过transformers库便捷地进行文本生成,这些模型按现状发布,需遵循其各自的许可协议。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
spacy-llm - spaCy与大语言模型整合的NLP组件
GithubLarge Language ModelsNLPOpenAIspaCyspacy-llm开源项目
该模块将大型语言模型(LLMs)集成到spaCy中,实现了快速原型设计和提示生成,无需训练数据即可输出可靠的NLP结果。支持OpenAI、Cohere、Anthropic、Google PaLM、Microsoft Azure AI等API,并兼容Hugging Face上的开源LLMs,如Falcon、Dolly、Llama 2等。还支持LangChain,提供命名实体识别、文本分类、情感分析等多种现成任务。用户可通过spaCy的注册表轻松实现自定义功能。该模块结合LLM的强大功能与spaCy的成熟基础,提供灵活高效的NLP解决方案。
GPT2-Chinese - GPT2-Chinese:支持多种中文Token化和大规模语料训练
BERT分词器GPT2-ChineseGithubHuggingface中文语言模型开源项目预训练模型
GPT2-Chinese项目提供了适用于中文的GPT2训练代码,支持BERT和BPE Tokenizer,能够生成诗词、新闻、小说等内容,适用于大规模语料训练。该项目基于Pytorch实现,支持最新的预训练模型,如通用中文模型和古诗词模型。详细的模型信息可以在Huggingface Model Hub中找到。用户可以自行训练和生成文本,同时支持FP16和梯度累积。
switch-base-128 - 探索语言模型优化与参数缩放的最新进展
GithubHuggingfaceSwitch Transformers专家开源项目模型混合专家蒙面语言建模语言模型
Switch Transformers采用专家混合(MoE)模型架构,针对掩码语言模型(MLM)任务进行训练。该模型使用稀疏多层感知器层取代传统的前馈层,提升了训练效率。在Colossal Clean Crawled Corpus上完成了高达万亿参数的预训练,表现出优于T5的微调效果,并实现了相较于T5-XXL模型的四倍加速,适合需要高效语言模型的应用。
indo-sentence-bert-base - 印尼语句子相似度计算与嵌入的优化解决方案
GithubHuggingfacetransformers库句子相似性同志句子BERT开源项目模型特征提取训练参数
indo-sentence-bert-base提供印尼语的文本相似度计算和语义搜索功能,通过高维向量实现精准句子比较,适用于集群分析和语义检索,支持HuggingFace和Sentence-Transformers库,具备高效的训练和评估机制。
x-transformers - 轻量级Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种从图像分类到语言模型的应用
Githubtransformerx-transformers开源项目模型训练编码器编解码器
x-transformers提供了多功能的Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种应用,从图像分类到语言模型。其先进技术如闪存注意力和持久内存,有助于提高模型的效率和性能。此项目是研究人员和开发者的理想选择,用于探索和优化机器学习任务中的Transformer技术。
stella-large-zh-v3-1792d - 多领域文本相似性与分类模型
GithubHuggingfacesentence-similarity任务度量开源项目数据集模型
stella-large-zh-v3-1792d项目专注于文本相似性与分类问题,结合多种评估任务和数据集,如STS、分类、聚类、重排序、检索等,展现了其在中文自然语言处理中的强大能力。在MTEB评测集的不同任务下,该模型表现良好。在相似度评估中,Pearson和Spearman相关系数较高,而在分类任务中,模型的准确率和F1值均有提升。同时,在搜索和重排序任务中,其平均精度和召回率也表现不俗,使其成为适用于多种语言处理场景的工具。
OPUS-MT-train - 用于训练多语言神经机器翻译模型的开源工具集
GithubOpus-MT多语言翻译开源软件开源项目机器翻译模型训练
OPUS-MT-train是一个开源的神经机器翻译模型训练工具集。它基于MarianNMT和OPUS数据集,提供了模型训练、评估和发布的完整脚本。该项目包含丰富的预训练模型,支持多语言翻译,并附有详细文档和教程。OPUS-MT-train适用于CSC HPC集群环境,包含了安装、设置和使用的详细说明。它还提供了低资源语言模型训练和Tatoeba翻译挑战等教程,致力于推动神经机器翻译技术的普及,为研究人员和开发者提供了实用的工具,有助于推进神经机器翻译技术的研究和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号