Project Icon

bert4ner-base-chinese

基于BERT的中文命名实体识别模型,具备高精度性能

bert4ner-base-chinese项目是一个基于BERT的中文命名实体识别模型,在人民日报数据集上取得了高精度表现。通过BertSoftmax网络结构,能够准确识别文本中的人名、时间等实体信息。可通过nerpy库调用该模型,也支持无外部依赖的直接调用方式,适用于各种自然语言处理应用。

camembert-ner - 基于camemBERT的高性能法语命名实体识别模型
GithubHuggingfaceNERcamemBERTwikiner_fr实体识别开源项目模型自然语言处理
camembert-ner是一个在wikiner-fr数据集上微调的法语命名实体识别模型。该模型在非正式文本如电子邮件和聊天记录中表现出色,尤其善于识别不以大写字母开头的实体。它能够识别人名、组织、地点和其他杂项实体,并可通过HuggingFace框架轻松集成。模型的整体F1分数为0.8914,其中人名识别准确率最高,达到0.9483。
ner-english - Flair框架英语命名实体识别模型 准确率93%
FlairGithubHuggingface命名实体识别序列标注开源项目模型深度学习自然语言处理
该模型是Flair框架的标准英语命名实体识别(NER)模型,能识别人名、地名、组织名和其他名称四类实体。采用Flair嵌入和LSTM-CRF架构,在CoNLL-03数据集上F1分数达93.06%。用户可通过Flair库轻松加载使用。模型提供了详细的训练脚本和引用信息,方便研究人员进一步探索和引用。
gliner_base - 灵活的命名实体识别模型,适用各种场景
BERTGLiNERGithubHuggingface命名实体识别多语言开源库开源项目模型
GLiNER是基于双向Transformer编码器的命名实体识别模型,能够识别多种实体类型,是传统NER模型的实用替代方案。与大型语言模型相比,GLiNER在资源受限场景中更高效且成本更低。该模型支持多语言并易于安装,用户可通过Python库轻松集成和使用。最新版本更新了多个模型参数,提升了性能,适合广泛的语言环境。该模型由Urchade Zaratiana等人开发,旨在提升科研和工业界的文本分析能力。
bert-spanish-cased-finetuned-ner - 西班牙语BERT模型微调用于命名实体识别
BETOGithubHuggingfaceNER开源项目模型精调西班牙语
通过微调,西班牙语BERT cased模型被优化用于命名实体识别任务。使用CONLL Corpora ES数据集,训练数据包含8700条实例,开发数据2200条。在评估集上F1得分为90.17,表现优于其他多语种和TinyBERT模型。采用Huggingface工具包,便于快速应用。
span-marker-bert-base-conll2002-es - 该模型在命名实体识别中实现高效精确识别
GithubHuggingfaceSpanMarkerbert-base-casedconll2002命名实体识别开源项目模型精度
该模型基于conll2002数据集训练,使用bert-base-cased编码器进行命名实体识别。精确度、召回率和F1评分分别为0.8331、0.8074和0.8201。支持直接推理和二次调优,同时具备良好的可读性和效率,是提升实体识别能力的有效工具。
ner-english-ontonotes-fast - 基于Flair框架的英文命名实体识别模型
FlairGithubHuggingfaceOntonotes命名实体识别开源项目模型深度学习自然语言处理
基于Flair框架开发的英文命名实体识别模型,支持识别人名、地点、组织机构等18类实体。模型在Ontonotes数据集上F1分数达到89.3%,通过Python API可快速集成使用。适用于各类英文文本的命名实体识别任务。
bert-base-arabic-camelbert-mix-ner - 基于CAMeLBERT Mix的阿拉伯语命名实体识别模型
CAMeLBERT-MixGithubHuggingface命名实体识别开源项目模型自然语言处理阿拉伯语预训练模型
这是一个基于CAMeLBERT Mix模型微调的阿拉伯语命名实体识别模型。该模型使用ANERcorp数据集进行训练,能够识别阿拉伯语文本中的地点等命名实体。用户可通过CAMeL Tools或Transformers pipeline轻松调用。模型在多项自然语言处理任务中表现优异,尤其适合处理现代标准阿拉伯语文本。
NuNER-multilingual-v0.1 - 支持九种以上语言的高性能多语言实体识别系统
GithubHuggingfaceMultilingual BERTNLPNuMind多语言模型实体识别开源项目模型
NuNER-multilingual-v0.1作为一个多语言实体识别系统,通过对多语言BERT模型进行优化,实现了对英语、法语等9种以上语言的支持。系统基于Oscar数据集训练,具备跨领域和跨语言的实体识别能力。在性能测评中,其F1宏观指标相比基础mBERT有明显提升,单层嵌入达到0.5892,双层嵌入达到0.6231的水平。该系统可直接使用或根据具体需求进行定制化训练。
bengali_language_NER - 在Wikiann数据集上使用多语言BERT模型微调,实现孟加拉语实体识别
Bengali Named Entity RecognitionF1评分GithubHuggingfaceWikiann多语言开源项目模型精调
该项目使用Wikiann数据集微调bert-base-multilingual-cased模型,实现孟加拉语命名实体识别。标签分类涵盖人物、组织、地点,高训练集F1分数达0.9979,测试集为0.9673,并提供实例代码,适合研究语言处理与语义分析的用户。
indobert-model-ner - IndobertNER:基于BERT的印度尼西亚语命名实体识别模型
GithubHuggingfaceIndoBERT命名实体识别开源项目模型模型微调深度学习自然语言处理
IndobertNER是基于indolem/indobert-base-uncased模型微调的印度尼西亚语命名实体识别模型。在评估集上,该模型展现出优秀性能,精确率达0.8307,召回率为0.8454,F1分数为0.8380。模型训练采用Adam优化器,使用线性学习率调度器,经过10轮迭代。虽然目前缺乏具体应用指南,但IndobertNER在印度尼西亚语自然语言处理领域具有广阔应用前景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号