Project Icon

pytextclassifier

PyTextClassifier:支持多种文本分类和聚类算法的高性能工具库

PyTextClassifier是一款高性能的Python工具库,提供多种文本分类和聚类算法,支持二分类、多分类、多标签分类和Kmeans聚类。适用于情感分析和文本风险分类,设计简明易用,算法高效清晰。支持句子和文档级的文本任务,兼容英文和中文文本。包含FastText、TextCNN、TextRNN和BERT等深度学习模型,适合各类生产环境。

Keras-TextClassification - 多样预训练模型支持的高效文本分类工具
GithubKeras-TextClassification嵌入式模型开源项目文本分类深度学习神经网络
为中文用户提供高效的文本分类解决方案,支持FastText、BERT、Albert等多种预训练模型,涵盖词、字、句子嵌入。详细介绍数据处理与模型训练流程,通过下载与调用数据,实现多标签分类和文本相似度计算,简化复杂的自然语言处理任务。
text_classifier_tf2 - 多模型文本分类框架 支持TextCNN、BERT等
Github开源项目文本分类模型部署深度学习模型训练方法评估指标
该开源项目提供基于TensorFlow 2的多模型文本分类框架。支持TextCNN、TextRNN、BERT等模型,集成词向量增强、对抗训练、对比学习等功能。框架适用于二分类和多分类任务,提供灵活配置选项。项目还包含交互式预测和批量测试工具,便于分析模型性能和错误案例。
PyShortTextCategorization - Python短文本分类和挖掘库
GithubPython开源项目文本分类机器学习短文本挖掘自然语言处理
PyShortTextCategorization是一个专门用于短文本分类和挖掘的Python库。它集成了多种文本表示方法,如主题建模和词嵌入,支持有监督和无监督学习。该库提供文本预处理、预训练词嵌入、多种分类算法和短语相似度计算等功能,为短文本分析提供了全面的工具集。适用于Python 3.8-3.11版本,具备示例数据集、文本预处理、预训练词嵌入支持等特性。它整合了多种主题模型和神经网络分类器,并提供短语差异度量和字符级序列到序列学习等高级功能。
small-text - Small-Text:Python中的文本分类主动学习工具
GithubPythonsklearnsmall-text开源项目文本分类积极学习
Small-Text 是一个前沿的文本分类主动学习工具,支持多种查询策略、初始化策略和停止准则,用户可以灵活组合使用。工具支持 GPU 加速的 Pytorch 模型和 transformers 集成,适用于复杂文本分类任务,同时也支持 CPU 的轻量安装。科学验证的组件和详细文档使无论是试验还是实际应用,都变得更简单。要求 Python 3.7 或更高版本,支持 CUDA 10.1 或更新版本。如需了解更多,请访问其文档和安装指南。
Pytorch-RNN-text-classification - RNN短文本分类模型 支持多类别高效处理
GithubLSTMPyTorchRNN开源项目短文本分类词嵌入
Pytorch-RNN-text-classification是一个多类别短文本分类模型,基于RNN架构设计。该项目使用Pytorch实现,集成词嵌入、LSTM(或GRU)和全连接层。模型支持GloVe预训练词向量,采用交叉熵损失函数和Adam优化器。通过零填充和PackedSequence技术处理mini-batch,提高训练效率。项目包含数据预处理和训练脚本,方便研究人员快速应用于实际文本分类任务。
classifier - Ruby实现的文本分类和语义分析库
ClassifierGithubLSI开源项目文本分类机器学习贝叶斯分类
Classifier是一个Ruby开源库,实现了贝叶斯分类和潜在语义索引算法。它提供文本分类、语义分析、搜索和聚类功能,适用于多种文本处理任务。该库具有良好的性能和扩展性,同时保持了使用简便性。Classifier提供了详细文档和示例,便于开发者快速上手和集成。
classifier-multi-label - 基于BERT的多标签文本分类算法实现
BERTGithubSeq2SeqTextCNNtf.nn.softmax_cross_entropy_with_logits多标签分类开源项目
本项目介绍了如何使用BERT结合TextCNN、Denses、Seq2Seq等多种算法实现多标签文本分类。涵盖了模型结构、损失函数和解码方法等细节,展示了不同方法在推理速度和分类效果上的表现,提供了实验数据和结论,帮助开发者选择最佳解决方案。
TextBlob - Python自然语言处理库 轻松实现文本分析
GithubNLTKPython库TextBlob开源项目文本分析自然语言处理
TextBlob是一款Python自然语言处理库,提供简洁API实现多种文本分析任务。支持词性标注、名词短语提取、情感分析和分类等功能,集成NLTK和pattern库优势。包含分词、词频统计和拼写校正等工具,适用于广泛的文本处理场景。TextBlob设计简单直观,方便各层级开发者使用。
fast-bert - 快速训练和部署BERT与XLNet文本分类模型的深度学习库
Fast-BertGithub开源项目文本分类深度学习自然语言处理预训练模型
fast-bert是一个深度学习库,用于训练和部署基于BERT和XLNet的文本分类模型。它支持多类和多标签分类,提供数据处理、模型训练、参数调优和部署功能。该库集成了LAMB优化器和学习率查找器,旨在简化最新自然语言处理技术的应用过程。fast-bert适用于各类文本分类任务,能够帮助开发者快速构建高性能模型。
pyss3 - 简洁明了的文本分类Python库
GithubPySS3开源项目文本分类机器学习模型评估
PySS3是一个用于文本分类的Python库,使用简单且可解释的SS3模型,适合需要清晰了解决策依据的应用场景。PySS3提供了诸如SS3类、实时测试的Live_Test类和评估工具Evaluation类,帮助用户快速开发和优化机器学习模型。直观的API和可视化工具使得用户可以轻松提升模型性能,理解模型决策的原因。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号