Project Icon

similarities

文本和图像相似度计算与语义搜索的高效工具

该工具包提供多种文本和图像相似度计算及语义匹配算法,支持高效处理亿级数据。主要功能包含文本相似度计算、文本搜索、图文匹配、图像搜索等多种算法。项目采用Python3开发,支持命令行操作,基于PyTorch和FastAPI等技术,可实现多语言环境下的高效向量表示及检索,开箱即用。

client-vector-search - 高性能的客户端向量搜索库,支持浏览器和服务器端
Githubclient-vector-search余弦相似度嵌入技术开源项目搜索库索引创建
client-vector-search是一个高效的客户端向量搜索库,支持嵌入、搜索和缓存操作,适用于浏览器和服务器端。该库默认使用transformers进行文档嵌入,计算嵌入间的余弦相似度,支持客户端索引创建和搜索,并具有浏览器缓存功能。相比OpenAI和Pinecone等VectorDB,它具有更快的性能和更高的效率,特别适用于快速处理数百到数千个向量的应用场景。该项目将持续维护和改进,并计划引入HNSW索引等新功能。
semantic-search-app-template - 优化语义搜索应用的构建模板,基于Atlas Embedding数据库和FastAPI
AtlasFastAPIGithubLangchainOpenAI嵌入式数据库开源项目
本教程和模板帮助使用Atlas Embedding数据库和FastAPI构建语义搜索应用。通过快速启动和配置,支持上传各种类型的内容并生成嵌入进行语义搜索。模板简化了从数据收集到后端REST API集成的过程,还支持OpenAI Embedding API和Langchain集成,并提供视觉调试工具来帮助理解搜索结果。
clip-flant5-xxl - 基于VQAScore论文的强大图像文本检索模型
CLIP-FlanT5-XXLFlan-T5GithubHuggingfaceVQAScore图像文本检索开源项目模型视觉语言生成模型
CLIP-FlanT5-XXL是一个基于google/flan-t5-xxl微调的图像文本检索模型,由Zhiqiu Lin等研究者开发。这个视觉语言生成模型专门针对VQAScore论文中的任务进行了优化。采用Apache-2.0许可证的CLIP-FlanT5-XXL能够高效处理图像和文本之间的关联。该模型在Hugging Face平台上提供了演示,技术细节可在GitHub仓库中查阅。
clip4clip-webvid150k - 改进视频检索精度的解决方案
CLIP4ClipGithubHugging FaceHuggingfaceWebVid开源项目模型模型评估视频检索
CLIP4Clip结合CLIP模型和WebVid数据集,成功在视频文本检索中提高精度,利用150,000个视频文本对的训练提升性能。此模型擅长处理大规模视频数据,具备视觉-时间概念学习能力,适合高效视频搜索应用。其架构支持文本到视频的快速检索,提升搜索效率。
e5-small-v2 - 轻量级多语言嵌入模型用于语义搜索和自然语言处理
GithubHuggingfaceMTEBsentence-transformers开源项目文本相似度模型模型评估自然语言处理
e5-small-v2是一款轻量级多语言嵌入模型,适用于语义搜索和自然语言处理任务。该模型在MTEB基准测试中表现优异,涵盖文本分类、检索、聚类和语义相似度等多个领域。尽管体积小巧,e5-small-v2仍能有效处理多种语言,为开发者提供了一个高效且多用途的嵌入解决方案。
clip-interrogator - 一种提示工程工具
CLIP InterrogatorGithubOpenAIStable Diffusion人工智能图像生成开源项目
CLIP Interrogator结合了OpenAI的CLIP和Salesforce的BLIP,优化生成与给定图像相匹配的文本提示。支持Stable Diffusion和DreamStudio等文本到图像模型。现已作为Stable Diffusion Web UI扩展供使用,并支持在Colab、HuggingFace和Replicate上运行。用户可通过Python虚拟环境安装,并根据系统VRAM配置自定义优化。提供多种预训练CLIP模型供选择,满足不同需求。
paraphrase-multilingual-MiniLM-L12-v2 - 多语言句子相似性和语义聚类的高效工具
BERT模型GithubHuggingfacesentence-transformers开源项目模型特征提取语义搜索语句相似性
paraphrase-multilingual-MiniLM-L12-v2模型是sentence-transformers框架的一部分,能够将句子转换为384维的密集向量。该模型支持多语言功能,适合进行句子聚类和语义搜索,并能通过HuggingFace Transformers应用。在此模型的优化下,您可在多语言环境(如法语、葡萄牙语、中文)中高效实现句子相似性比较和特征提取,并利用其简便的安装和使用过程提升操作效率。
gte-micro-v3 - 轻量级语义嵌入模型用于高效文本相似度计算
GithubHuggingfacegte-micro-v3sentence-transformers开源项目文本嵌入模型自然语言处理语义相似度
gte-micro-v3是一个轻量级语义嵌入模型,由gte-tiny蒸馏而来。该模型主要用于语义自动补全,可生成句子嵌入向量,实现文本相似度计算。基于sentence-transformers框架开发,支持最多512个token的英文输入。在MTEB评测中表现优异,适用于要求高效文本语义理解的应用。
fashion-clip - 专为时尚领域优化的对比语言视觉学习模型
CLIPFashionCLIPGithubHugging Face开源项目时尚行业模型
FashionCLIP是一个为时尚行业优化的CLIP模型,用于提升商品检索、分类和时尚分析的表现。通过超过70万对图像和文本数据进行微调,FashionCLIP在零样本场景下表现出色。更新版FashionCLIP 2.0采用更多训练数据,显著提高了FMNIST、KAGL和DEEP数据集的性能。项目提供开源代码和模型权重,可在Hugging Face上获取,并支持多种API和教程便于上手。
interpret-text - 基于Interpret的开源NLP模型解释工具,支持文本模型分析
GithubInterpret-TextNLP互动可视化仪表板可解释性技术开源项目文本解释
Interpret-Text是一个开源工具包,基于Interpret Python包,扩展了对文本模型的支持,提供SDK和示例Jupyter笔记本。用户可以使用全球和局部解释工具,分析和解释机器学习模型的预测结果。核心功能包括社区驱动的创新技术、统一API和互动式可视化仪表盘,适用于开发者、数据科学家、业务高管和研究人员,通过多种解释器和NLP应用场景,简化模型解释和审计过程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号