Project Icon

gpn

基于DNA语言模型的基因组变异效应预测工具

GPN是一个基于DNA语言模型的开源项目,致力于基因组范围内的变异效应预测。项目包括单序列(GPN-SS)和多序列比对(GPN-MSA)两种模型,适用于人类和植物等多个物种的分析。GPN提供Python接口,支持自定义数据训练,并包含从数据集创建到变异效应预测的完整工作流程。这一工具为基因组研究提供了新的分析方法。

GPN (基因组预训练网络)

[hgt_genome_392c4_a47ce0](https://raw.githubusercontent.com/songlab-cal/gpn/main/ https://genome.ucsc.edu/s/gbenegas/gpn-arabidopsis)

GPN论文GPN-MSA论文的代码和资源。

目录

安装

pip install git+https://github.com/songlab-cal/gpn.git

最小使用示例

import gpn.model
from transformers import AutoModelForMaskedLM

model = AutoModelForMaskedLM.from_pretrained("songlab/gpn-brassicales")
# 或
model = AutoModelForMaskedLM.from_pretrained("songlab/gpn-msa-sapiens")

GPN

也可称为GPN-SS(单序列)。

示例

  • 模型使用示例:examples/ss/basic_example.ipynb 在Colab中打开

特定论文的代码和资源

使用自己的数据进行训练

  1. [创建数据集的Snakemake工作流程](https://github.com/songlab-cal/gpn/blob/main/workflow/make_dataset
    • 可以根据给定的登录号列表自动从NCBI下载数据,或使用您自己的fasta文件。
  2. 训练
    • 将自动检测所有可用的GPU。
    • Weights & Biases上跟踪指标。
    • 已实现的模型:ConvNetGPNRoFormer(Transformer)
    • 指定配置覆盖:例如 --config_overrides n_layers=30
    • 示例:
WANDB_PROJECT=your_project torchrun --nproc_per_node=$(echo $CUDA_VISIBLE_DEVICES | awk -F',' '{print NF}') -m gpn.ss.run_mlm --do_train --do_eval \
    --fp16 --report_to wandb --prediction_loss_only True --remove_unused_columns False \
    --dataset_name results/dataset --tokenizer_name gonzalobenegas/tokenizer-dna-mlm \
    --soft_masked_loss_weight_train 0.1 --soft_masked_loss_weight_evaluation 0.0 \
    --weight_decay 0.01 --optim adamw_torch \
    --dataloader_num_workers 16 --seed 42 \
    --save_strategy steps --save_steps 10000 --evaluation_strategy steps \
    --eval_steps 10000 --logging_steps 10000 --max_steps 120000 --warmup_steps 1000 \
    --learning_rate 1e-3 --lr_scheduler_type constant_with_warmup \
    --run_name your_run --output_dir your_output_dir --model_type ConvNet \
    --per_device_train_batch_size 512 --per_device_eval_batch_size 512 --gradient_accumulation_steps 1 \
    --torch_compile
  1. 提取嵌入
    • 输入文件需要包含chromstartend
    • 示例:
torchrun --nproc_per_node=$(echo $CUDA_VISIBLE_DEVICES | awk -F',' '{print NF}') -m gpn.ss.get_embeddings windows.parquet genome.fa.gz 100 your_output_dir \
    results.parquet --per-device-batch-size 4000 --is-file --dataloader-num-workers 16
  1. 变异效应预测
    • 输入文件需要包含chromposrefalt
    • 示例:
torchrun --nproc_per_node=$(echo $CUDA_VISIBLE_DEVICES | awk -F',' '{print NF}') -m gpn.ss.run_vep variants.parquet genome.fa.gz 512 your_output_dir results.parquet \
    --per-device-batch-size 4000 --is-file --dataloader-num-workers 16

GPN-MSA

示例

  • 模型使用示例:examples/msa/basic_example.ipynb
  • 变异效应预测:examples/msa/vep.ipynb
  • 训练(人类):examples/msa/training.ipynb

特定论文的代码和资源

在其他物种上训练(如植物)

正在建设中。

引用

GPN:

@article{benegas2023dna,
    author = {Gonzalo Benegas  and Sanjit Singh Batra  and Yun S. Song },
    title = {DNA language models are powerful predictors of genome-wide variant effects},
    journal = {Proceedings of the National Academy of Sciences},
    volume = {120},
    number = {44},
    pages = {e2311219120},
    year = {2023},
    doi = {10.1073/pnas.2311219120},
    URL = {https://www.pnas.org/doi/abs/10.1073/pnas.2311219120},
    eprint = {https://www.pnas.org/doi/pdf/10.1073/pnas.2311219120},
}

GPN-MSA:

@article{benegas2023gpnmsa,
	author = {Gonzalo Benegas and Carlos Albors and Alan J. Aw and Chengzhong Ye and Yun S. Song},
	title = {GPN-MSA: an alignment-based DNA language model for genome-wide variant effect prediction},
	elocation-id = {2023.10.10.561776},
	year = {2023},
	doi = {10.1101/2023.10.10.561776},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2023/10/11/2023.10.10.561776},
	eprint = {https://www.biorxiv.org/content/early/2023/10/11/2023.10.10.561776.full.pdf},
	journal = {bioRxiv}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号