Project Icon

lang-id-commonlanguage_ecapa

基于ECAPA-TDNN的多语言语音识别模型

该项目开发了一个基于ECAPA-TDNN架构和SpeechBrain框架的语言识别模型,能够从语音输入中识别45种不同语言。模型在CommonLanguage数据集上预训练,达到85%的识别准确率。系统采用ECAPA模型结合统计池化技术,并在其上应用分类器。模型支持处理16kHz采样率的音频,并能自动进行音频标准化。项目提供了简洁的Python接口,方便研究者和开发者进行语言识别实验和应用开发。

langdetect - 语言检测工具,支持现代和中世纪多种语言
GithubHuggingfaceXLM-RoBERTa中世纪语言开源项目文本分类模型语言检测跨语言学习
langdetect是一个基于XLM-RoBERTa的语言检测模型,支持包括现代和中世纪在内的41种语言。该模型经过微调,专用于文本序列的分类任务,测试集准确率高达99.59%。利用Monasterium和Wikipedia数据集进行训练,确保其在多语言文本分类中的高效表现。该模型适合各种科研和应用场景,满足多语言识别的需求。
wav2vec2-large-xlsr-53-esperanto - 基于XLSR-53微调的世界语语音识别模型
Common VoiceEsperantoGithubHuggingfaceWav2Vec2XLSR开源项目模型语音识别
该项目基于wav2vec2-large-xlsr-53模型,使用世界语Common Voice数据集进行微调,开发了一个世界语语音识别模型。模型在测试集上实现12.31%的词错误率(WER),支持16kHz采样率的语音输入。它可直接应用于语音识别任务,无需额外语言模型。项目详细介绍了模型的使用方法和评估过程。
clap-htsat-fused - 对比语言与音频学习中的多任务性能提升
CLAPGithubHuggingface多模态表示学习对比学习开源项目模型零样本音频分类音频表示
CLAP项目使用对比语言-音频预训练模型结合音频编码器与文本编码器,提升多模态学习表现。该模型支持文本到音频检索、零样本音频分类及监督音频分类等多项任务。通过特征融合机制和关键词到字幕增强,CLAP能高效处理不同长度的音频输入。所发布的LAION-Audio-630K数据集及模型在文本到音频检索和零样本音频分类中表现优异,适用于零样本音频分类及音频、文本特征提取。
wav2vec2-large-xlsr-53 - 突破性多语言语音识别模型 适用低资源语言场景
GithubHuggingfaceWav2Vec2-XLSR-53多语言模型开源项目模型深度学习语音识别预训练模型
Wav2Vec2-XLSR-53是一款基于wav2vec 2.0架构的多语言语音识别模型。该模型通过在53种语言的原始音频上预训练,学习跨语言语音表示。在CommonVoice和BABEL等基准测试中,Wav2Vec2-XLSR-53显著优于单语言模型,特别适合低资源语言的语音识别任务。这一开源项目为研究人员提供了强大工具,有助于推动低资源语言语音理解的进展。
bert-base-multilingual-cased-finetuned-langtok - 基于多语言BERT的语言识别模型实现99.03%准确率
BERTGithubHuggingface多语言模型开源项目微调模型自然语言处理语言识别
这是一个基于bert-base-multilingual-cased的语言识别微调模型。模型在评估集上的准确率为99.03%,F1分数达到0.9087。模型采用Adam优化器和线性学习率调度器,经过3轮训练完成。开发框架使用Transformers 4.44.2和PyTorch 2.4.1,可应用于语言识别相关任务。
SenseVoice - 高效、多语种语音识别与情绪识别技术平台
GithubSenseVoice多语言语音识别开源项目情绪识别推理效率热门音频事件检测
SenseVoice是一款支持多语言的语音解析模型,整合了自动语音识别、语种识别、情绪识别及音频事件检测功能。该项目采用非自回归端到端框架,可在超过50种语言上提供精准的语音识别服务,大幅降低了推理延迟,提供方便的微调脚本和多语种细粒度情绪分析,支持多种客户端语言和服务部署,适用于多种商业场景。
v3_1_pt_ep1_sft_5_based_on_llama3_1_8b_final_data_20241019 - 探索先进的自然语言处理开源模型及其实际应用
GithubHuggingfacetransformers开源项目模型模型卡环境影响训练细节语言模型
了解先进自然语言处理开源模型的信息,包括用途、评估方法及风险提示。虽然详细信息未完全披露,但以上内容可为开发和应用提供重要参考。
LanguageBind_Audio - 语言驱动的多模态预训练解决方案
GithubHuggingfaceLanguageBind公开源码多模态开源项目数据集模型语义对齐
LanguageBind是一个语言驱动的多模态预训练工具,在五个数据集上表现出色。该项目采用VIDAL-10M数据集,将视频、红外、深度、音频和语言模态结合,实现了跨越视觉模态的扩展。通过多视图增强和ChatGPT的结合,它提高了语言的语义表达,并支持在线和本地运行,包括音频与语言、视频与语言的相似性计算。
wav2vec2-indonesian-javanese-sundanese - 印尼、爪哇和巽他语的多语言语音识别模型
GithubHuggingfaceWav2Vec2印尼语多语言开源项目模型自动语音识别语音识别
利用优化的Wav2Vec2模型,专注于印尼、爪哇和巽他语的多语言语音识别,数据来自Common Voice和TTS数据集,拥有较低字错误率并提供在线演示,工具无需语言模型,适合16kHz语音输入,帮助研究人员和开发者探索多语言识别技术。
wav2vec2-xlsr-53-espeak-cv-ft - 基于Wav2Vec2的跨语言零样本音素识别模型
GithubHuggingfaceWav2Vec2多语言模型开源项目模型语音识别跨语言识别音素识别
此模型在wav2vec2-large-xlsr-53预训练基础上,利用多语言Common Voice数据集微调,实现了多语言音素识别。通过将训练语言音素映射至目标语言,该模型采用简单有效的跨语言零样本学习方法。相比先前研究,此方法显著提升了性能,为多语言语音识别领域提供了一个简洁而强大的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号