Project Icon

Meta-Llama-3-8B-Instruct-GPTQ-4bit

4位量化Llama 3指令模型实现轻量级高性能自然语言处理

Meta-Llama-3-8B-Instruct-GPTQ-4bit是基于Llama 3架构的4位量化大型语言模型。通过GPTQ量化技术,该模型显著减小了体积和内存占用,同时维持了良好性能。它特别适合在资源受限环境下运行,如移动设备和边缘计算设备。该模型可用于文本生成、问答和对话等多种自然语言处理任务。研究者和开发者可以利用Hugging Face Transformers库轻松部署该模型进行推理或进一步微调。

Llama-3.1-WhiteRabbitNeo-2-8B-GGUF - Llama-3.1量化模型实现优化文本生成
GithubHuggingfaceLlama-3.1-WhiteRabbitNeo-2-8BRAM开源项目数据集文本生成模型量化
Llama-3.1-WhiteRabbitNeo-2-8B使用llama.cpp进行量化,以优化文本生成功能。项目提供多种量化方案,如Q6_K_L和Q5_K_L,适应不同内存条件,特别推荐Q6_K_L用于嵌入及输出权重以获取优异表现。用户可以使用huggingface-cli快捷下载所需文件,并通过Q4_0_X_X对ARM芯片进行性能优化。此项目提供详细决策指南,帮助选择合适的量化版本。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
buddhi-128k-chat-7b-GGUF - 高效的文本生成模型量化方式,保障性能与质量
GithubHuggingfacellama.cpp开源项目模型质量量化高精度
本项目通过llama.cpp的量化处理,满足多样硬件需求,提供不同文件格式。i-matrix选项的应用和各类量化方式的整合,提升了模型精度与效率。根据RAM和VRAM情况,用户可以选择合适的量化版本。通过特性图表选择K-quants或I-quants,尤其是I-quants在性能和体积方面更具优势。下载指引详细,便于用户节省存储空间并优化性能,支持多种GPU平台,适合专业用户高效部署。
TinyLlama-1.1B-Chat-v0.3-AWQ - 高效量化方法助力多用户场景下的快速推理
GithubHuggingfaceTinyLlama低比特量化多用户服务器开源项目推理效率模型
该项目采用AWQ低位量化方法,提高了多用户服务器场景下的Transformers推理速度和效率。相比GPTQ,AWQ在减少部署成本的同时,能够使用更小的GPU进行推理。TinyLlama模型支持4-bit量化,并兼容vLLM与Huggingface TGI插件,高效应对高并发需求。在Zhang Peiyuan的开发下,该模型适合计算和内存资源有限的开源项目部署。
llama3 - Llama 3开源大语言模型 推动AI创新与责任发展
GithubLlama 3Meta人工智能大语言模型开源开源项目
Meta推出Llama 3系列大语言模型,参数规模从8B到70B不等,包含预训练和指令微调版本。该系列面向广泛用户群体开放,旨在推动负责任的AI创新。Llama 3具备8192个token的序列处理能力,并提供便捷的加载和推理代码。模型权重和分词器可通过官方网站或Hugging Face平台获取。
Llama-3.2-11b-vision-uncensored - 图像处理与自然语言生成的先进集成工具
AI助手GithubHuggingfacealpindale/Llama-3.2-11B-Vision-Instruct图像处理开源项目模型模型量化自然语言生成
Llama-3.2-11b-vision-uncensored项目结合了图像处理和自然语言生成,使用Peft和torch库,专注于提供直接且无偏见的AI响应。自定义配置支持高效模型加载,适合要求高度注意力的场景。
Llama-2-7b-hf - Meta开发的开源语言模型 支持多种参数规模和商业应用
GithubHuggingfaceLlama 2人工智能大语言模型开源项目模型自然语言处理预训练模型
Llama-2-7b-hf是Meta推出的开源大型语言模型之一,采用优化的Transformer架构。该模型经过2万亿token预训练,拥有70亿参数,支持4k上下文长度。Llama 2系列提供预训练和微调版本,可用于多种自然语言生成任务。在多项基准测试中表现优异,并支持商业应用,是一个功能强大的开源AI工具。
Upstage-Llama-2-70B-instruct-v2-AWQ - 先进的低比特量化技术优化文本生成模型
GithubHuggingfaceLlama 2 70B Instruct v2Upstage开源项目文本生成模型量化
Upstage通过AWQ模型实现高效的4比特量化,相较于GPTQ提供更快的推理速度。AWQ支持高吞吐量的多用户服务器环境,可在更小的GPU上运行,从而降低部署成本。此外,模型在多项基准测试中表现卓越,能够在单个48GB GPU上运行70B模型,便于快速部署。了解更多关于该模型的性能和应用场景。
Llama-2-13b-hf - Meta开源的130亿参数语言模型 适用于多种NLP任务
GithubHuggingfaceLlama 2人工智能元宇宙大语言模型开源项目模型自然语言处理
Llama-2-13b-hf是Meta开发的大规模语言模型,拥有130亿参数。该模型在2万亿tokens的公开数据上预训练,采用优化的Transformer架构。它支持对话、问答、文本生成等多种NLP任务。与Llama 1相比,Llama 2在代码、常识推理、世界知识等基准测试中表现更佳。此模型开源可用于商业和研究,为AI应用开发奠定了基础。
MicroLlama - 预算内的大规模语言模型构建:300M Llama模型的探索
GithubHuggingfaceMicroLlamahuggingface开源开源项目文本生成模型语言模型
该项目在有限预算内,通过全面开源的方法构建了一个300M Llama语言模型。尽管性能不及更大型的模型,但以不到500美元的投入,在多数据集上表现出色,并在与类似参数的BERT模型比较时展现优势。项目使用Vast.ai的计算资源和AWS S3存储,对TinyLlama模型进行了调整,重点优化Slimpajama数据集。这一项目展示了低成本大规模模型开发的潜力,并为细化应用如轻量级聊天机器人提供了坚实基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号